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Abstract

This thesis investigates symbolic execution, a method originally developed for the verification
and validation of programs, and extends it to deal with (state-based) specification languages as
well.

The main problems encountered are implicit specifications and the intended genericity with
respect to the specification language used. Implicit specifications are handled by introducing
‘description values’: identifiers take as values predicates which describe their ‘actual value’, the
value one would get by actual execution.

Language genericity is achieved by expressing the definition of symbolic execution in terms of
the semantics of the specification language used. Both denotational and operational semantics of
symbolic execution are discussed. The denotational semantics of symbolic execution, expressed
in terms of the denotational semantics of the specification language, provide a correctness notion
for symbolic execution. A description of the operational semantics of the language is used as a
parameter to tailor symbolic execution to that language.

Based on these ideas, a symbolic execution system called SYMBEX is described and specified.
SYMBEX is to form part of the project support environment IPSE 2.5 and help the user to validate
a specification by symbolically executing it.

Finally, the achievements and limitations of this approach are discussed, and suggestions made
for future work.
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Chapter 1

Introduction

Ein Mensch sitzt kummervoll und stier
Vor einem weiBen Blatt Papier.
Jedoch vergeblich ist das Sitzen —
Auch wiederholtes Bleistiftspitzen
Schirft statt des Geistes nur den Stift.
Selbst der Zigarre bittres Gift,

. Kaffee gar, kannenvoll geschlirit,
Den Geist nicht aus den Tiefen schiirft,
Darinnen er, gemein verbockt,
Hochst unzugénglich einsam hockt.
Dem Menschen kann es nicht gelingen,
Ihn auf das leere Blatt zu bringen.
Der Mensch erkennt, daB8 es nichts nitzt,
Wenn er den Geist an sich besitzt,
Weil Geist uns ja erst Freude macht,
Sobald er zu Papier gebracht.

Eugen Roth: Arbeiter der Stirn, in: Ein Mensch

1.1 Motivation

One major problem in producing software is the capture of the user’s requirements. Although one
can (at least in theory) prove the correctness of an implementation with respect to a specification,
this is no help at all if the specification itself is not correct, i.e. does not match the user require-
ments. When analysing these informal user requirements and writing a specification, there are
several problems that have to be overcome in order to produce a correct specification:

e specifier and user put different meanings to the same words
e users do not exactly know their requirements
o (formal) specifications can be difficult to understand because of

— unfamiliar syntax
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— unexpected interactions between different parts of the specification

The first of these problems can partly be overcome by using formal specification methods.
Even a formal specification, however, is often not clear enough for the user to see what the
system actually will do, especially for users with no previous experience with computers and
formal methods. Although he or she! might think the specification describes her requirements,
this might be seen to be false once she starts using the system. Changing the system at this stage
will usually be rather expensive. It would therefore be preferable if we could help the user to
check the system against her informal requirements before it is implemented, by giving her as
much ‘experience’ of the final system as is possible at this stage.

One is therefore looking for ways to validate a specification at a very early stage in the de-
velopment of a software system. Validation is the process of trying to ensure that a specification
or program describes the informal user requirements. This means that one has to compare it with
the informal requirements on the system. In verification, on the other hand, one looks backwards
and checks that the result of a development step satisfies its specification. Hence, in verification
one compares an implementation with its (formal) specification. This implies that validation is
an inherently informal process (although it may contain formal components), while verification,
at least in theory, can be made completely formal. According to [Zav84], validation is concemned
with “building the right system”, while verification is concemed with “building the system right”.

There are a number of ways of validating a specification, including inspection, static analysis
(analysis of syntax and static semantics), and animation. Animation is taken to mean any method
for making the specification ‘move’ or ‘behave’ in some way in order to derive some conse-
quences or properties of the specified software system before it is actually implemented. Possible
techniques include testing and prototyping, symbolic execution, and general formal reasoning.

By animating a specification, the user should be able to experiment with it, check it in a form
that she can understand, and have necessary changes made while it is still comparatively easy
and cheap to do so0. As a result, the user might change her mind about certain requirements once
they are seen in use (which otherwise would happen after the system has been implemented), and
perhaps even try out an alternative specification.

One particular way of animating a formal specification is to symbolically execute it, which is
the main topic of this thesis and described in §1.3.

The following model of software development will be assumed: given a vague description
of a problem, one starts off by analysing the requirements in detail. They are then formalised
in the specification, which is the starting point of a (usually iterative) refinement process. In
each refinement step, one starts from a specification and implements it, i.e. transforms it into
a less abstract form. In the first step, this specification is the original system specification. In
each following step, the result of the previous step is considered as a new specification, which is
then implemented again. This process is repeated until one gets the final product which can be
executed by computer.? The main difference between this model and “waterfall models” is the
introduction of iteration into the model. This is to allow for the fact that the software developer

n future I shall not make this distinction any more, but just refer to the user as either ‘he’ or ‘she’ at random.
2The concept of executable terms is discussed in §3.2. In addition to executability, the final product will usually
have to satisfy other requirements, such as efficiency etc.
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will often want to go back to a previous stage in the development and make some changes, for
example because the specification turns out not to describe the wanted properties. On the other
hand, maintenance is omitted in this model since this thesis is mainly concerned with getting the
early steps in software development right.

In this thesis, the term ‘specification’ is always used in the more restricted sense of formal and
functional specification of a software system, i.e. a specification describes functional properties
of the final system, as opposed to performance properties etc., and does so in a formal language.

The insistence on formal specification languages indicates that this work is concerned with
the formal methods approach to sofiware development. The author of this thesis is aware of
the criticisms of this approach [MLP79, Nau82, Fet88]. However, in the author’s opinion these
criticisms only point out the limitations of the formal methods approach which certainly cannot,
in itself, guarantee the correctness of any software system with respect to the user’s requirements,
let alone guarantee the correctness of the result of running the software system on a computer
in the physical world under all circumstances. While it is important to keep such limitations in
mind, they do not invalidate the formal methods approach itself.

To some extent, this thesis addresses one of the limitations of this approach, namely the pos-
sible mismatch between the user’s actual requirements on a software system and her requirements
as expressed in the formal specification. Techniques such as symbolic execution can be employed
to reduce this problem, but one should keep in mind that it is inherently impossible to completely
solve it; no validation or verification technique, whether formal or informal, can ever hope to
completely eliminate the possibility of such a mismatch.

1.2 Validation and animation of specifications

Probably the most common approach to validation of software systems today is to test the (more
or less) finished product. This approach has a number of well-known disadvantages, mainly that
it is very unreliable (testing can show the presence of errors, but never their absence), and errors
can only be discovered fairly late in the development process, when a lot of other work may have
been based on an erroneous decision, which makes its correction rather expensive.

Animation as described here is part of a larger validation process. It can be used as a validation
tool both during and at the end of the specification stage, the stage when validation is both most
difficult and most valuable. Although animation will not usually be used much after this stage,
validation has to continue until the final system has been implemented. The following discussion
is only concerned with animation and not with other validation techniques, such as static checks,
including for example checking of syntax and static semantics, even though their use should
obviously form part of the validation process. It will always be assumed that syntax checks have
already been done and the specifications handled are syntactically correct.

Animation can be done on different levels, for example:

Formal reasoning Deriving properties of the specification using theorem proving techniques.
This can be a useful technique in some cases but in general it is often not clear what should
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be proven about a specification. Possible properties to derive include implementability,
security with respect to some security model, or correct treatment of certain border cases.

Formal reasoning is a very general technique and can be said to include both actual and
symbolic execution: execution can be viewed as deriving theorems of the form ‘input =
... Doutput=...".

Actual execution (Testing) Interpreting the specification on given input values. This is discussed
in more detail below.

Symbolic execution Running the specification on symbolic input, i.e. variables over the input
domain or, more generally, predicates on such variables, called ‘description values’. This
approach is the subject of this thesis.

User interface prototyping User interface (UI) ideas can be used for animating a specification in
two different contexts. First, they can be used to animate and validate the UI, as opposed to
the functionality of the system. This usually involves building a prototype that displays only
some of the functionality of the system, but basically the same UI as is intended for the final
system, or at least a good graphical description of it. Such a graphical description might
be most adequate for computer systems that regulate or control some other equipment, but
where the user has to input some data, for example by pressing buttons.

One system that falls into this category is SPI, which is used for specifying/prototyping
user interaction with a system by considering this interaction as a sequence of basic steps
called events. Events may be themselves defined, or they may just have a name.

Second, graphics can be used to help understand the functionality of a specified system. In
this case, they just provide a different front-end (or view) of the output of animation. Con-
sider for example a specification of a lift system (this example has been used to demonstrate
animation in the FOREST project {QB*87, §3.4.4]). Rather than describing with formulae
and/or text that the lift moves from one floor to another, one might display a picture of a
lift moving on the screen.

This second approach seems very difficult to generalise: any one system can probably only
support graphical animation of a small group of similar applications.

A survey of different approaches to user interface prototyping is given in [HI88, §3.2].

Each of the methods described has got a number of drawbacks if used on its own as a tool for
ensuring the correctness of a program. To a certain extent, these can be overcome by combining
the different methods, and using each to check a particular aspect of the program’s correctness.

Actual execution and prototyping

For some languages, actual execution of specifications will be possible directly (this is often
referred 10 as prototyping). As described in [Flo84], a prototype is a system that displays some, but

3Developed at STC by H. Alexander, cf. [Ale87]
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not all of the features of the final product. This way, one can try out some ideas, without investing
the effort to build a complete system. Which features are left out depends on the particular
application; a common approach is to ignore efficiency and UI questions and build a prototype
which only displays (some of) the functionality of the final system. Often this can be done in 2
language that is higher-level than the implementation language of the final system, because the
prototype does not have to be as efficient.

{Flo84] distinguishes three main classes of prototyping:

exploratory prototyping puts the emphasis on clarifying requirements and on helping commu-
nication between software developer and user. Used for discussing various alternative so-
lutions.

experimental prototyping puts the emphasis on determining the adequacy of a proposed solution
before implementing it.

evolutionary prototyping puts the emphasis on adapting the system gradually to changing re-
quirements. In this case, the prototype gradually develops into the final product.

The following is mainly concemned with experimental prototyping, since it is assumed that a
specification (and hence a ‘proposed solution’) already exists, or at least a high-level rudimentary
version of it.

In general, prototyping is different from animation of specifications since a prototype is not
usually derived directly from the specification. It usually has to be implemented separately and,
since it is executable, the prototyping language cannot be as rich as a specification language might
be, an aspect that is often ignored in the prototyping literature. Strictly speaking, prototyping can -
only be regarded as animation if the prototype itself is (part of) the specification of the final
system, or at least can be derived directly from it. Languages suitable for this are often referred
to as executable specification languages. [HI88] gives a detailed account why it is not advisable
to restrict oneself to executable specification languages.

Examples of executable specification languages that are used for prototyping are me too
[Hen84, HM85] and EPROL [HI88]. They are both based on the executable part of VDM,* ex-
pressed in a functional style. In particular, this implies that implicit definitions and operations
(functions with side effects) cannot be handled. In me too, specifications written in this restricted
subset of VDM are then translated into a version of LISP called Lispkit. EPROL is interpreted in
the EPROS prototyping system.

In general, however, a specification will contain non-executable constructs, so that testing
or prototyping will not be possible directly. In this case, one has to translate (manually, semi-
automatically or automatically) the specification into a suitable (programming) language. This
requires a major refinement of the specification before it can be animated. Note here that the
specification and programming language are not necessarily separate languages, wide-spectrum
languages combine the two into a single language (e.g. CIP, see [B*87]). This allows for a gradual
refinement from a specification including non-executable terms to an executable program.

4See §3.2 for a discussion of what is meant by the term ‘executable’.
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A different approach to prototyping is based on algebraic specifications, where systems are
described in terms of (conditional) equations on terms. Functions are defined implicitly by giving
equations describing their effects, for example pop(push(e, st)) = st. These equations are then
directed to turn them into rewrite rules. The specification is animated by applying the resulting
rewrite system. Example systems of this approach are OBJ (see [GM82]) and RAP (see [Hus85,
GHB85]).

As has been described, prototyping can be very useful for providing some early ‘hands-on’
experience of a system and help to clarify the requirements on the system. The benefits that can
be gained from prototyping are discussed in some detail in [HIB8, §2.5]. However, prototyping as
a method for validating specifications also has a number of disadvantages, including all the usual
disadvantages of testing. In particular, it is very unreliable as a tool for validation, since testing
only provides results for a fairly small set of input values. Furthermore, it loses at a very early
stage in the development process all the under-determinedness? that a good specification usually
allows, since a prototype will always have to choose one out of several possible output values.
Additionally, any possible non-determinacy will often not be visible to the user.

1.3 Symbolic execution

Symbolic execution is a concept that was first introduced by King (cf. [Kin76]). It is based on
the idea of executing a program without providing values for its input variables. The output will
then in general be a term depending on these input variables, rather than an actual® value. This is
usually described as supplying a symbolic input value and returning a symbolic output value.

Symbolic execution has been used for a number of different purposes, such as program veri-
fication, validation, and test case generation (see §2.1 for more details).

In the work described here, the basic ideas of symbolic execution have been extended in order
to handle specifications as well as programs. This is done by introducing so-called description
values, in addition to the usual actual and symbolic values. Description values of (program)
variables are formulae that describe (usually implicitly) the value associated with this variable.

Symbolic execution can be considered as a technique for ‘executing’ programs when some of
the information normally needed is not available. In this sense, symbolic execution allows one 1o
handle partial information about

* input data: the input values are not determined (or at least not uniquely); this means one
has to handle a whole range of input values, rather than a single value.

SA specification [spec] is non-deterministic, if, given any input values, the output value of executing (an imple-
mentation of) [[spec] is not uniquely defined and may be different in different executions. {[specl is under-determined
if, given any input values, the output value of executing an implementation of [[spec] is not uniquely defined, but for
any given implementation the value is always the same. Under-determinedness is thus a property of specifications
alone, while non-determinism is a property of both specifications and programs, see {Wie88]. The terms “execution”
and “implementation” used here will be defined in §3.2 and §3.3.

®I shall call values in the usual sense “actual values”, in order to distinguish them from “symbolic values”. Similarly,
I shall call the usual form of execution of programs “actual execution™.
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e algorithm: the algorithm for computing the output value for any given input value is not
provided (or at least incomplete). In this case one usually talks about a specification rather
than a program. So far, symbolic execution has usually only been applied to programs, only
in the GIST system (see §2.1.2) and the system developed by Kemmerer (see §2.1.2) has
symbolic execution been extended to specifications.

e output data: the output values are not determined uniquely by the input values and the
algorithm, i.e. the program or specification is non-deterministic or under-determined.

The symbolic execution system described in this thesis (called SYMBEX) is intended to be
part of the IPSE 2.5 (Integrated Project Support Environment, cf. §1.4); it is to be used as a tool
to validate a (formal) specification against its (informal) requirements, and thus to support the
first step in formal software development. SYMBEX should help the user to analyse and under-
stand a specification before it is implemented, by providing suitable feedback about the specified
behaviour. Note that this thesis only deals with symbolic execution as a tool for validation, as
opposed to verification. Therefore, it does not deal with symbolic execution as a tool for static
analysis, providing input to other analysis tools, as done in some other symbolic execution sys-

* tems (for example the Harvard PDS system described in §2.1.2). Instead, symbolic execution is

used to analyse the dynamic behaviour of a specification. However, many of the ideas described
in this thesis, in particular the formal description given in §4.1, would apply to other forms of
symbolic execution as well.

The form of symbolic execution described here is intended to be used during and after the
development of a specification. Symbolic execution can actually be a useful tool even during the
specification phase, since it can be applied to incomplete specifications. This is possible since
symbolic execution can deal with names of functions instead of their definitions (see §7.4 for
more details).

A problem with using symbolic execution for checking the correctness of a specification or
a program is the danger that, even though the system might show a mistake, such as referencing
a wrong variable, the user might not notice it. This can happen in particular when the results
of symbolic execution look too similar to the original specification. Since the user overlooked
the error there, she will probably do the same again when looking at the results of symbolically
executing the specification. This puts special importance on the UI, since it has to present the
information in such a way that it helps the user understand a specification.8

Providing a useful symbolic execution system is made more difficult by the fact that users are
different from one another and therefore find different kinds of expressions easy to understand.
Thus, a ‘simplification’ for one user, perhaps by folding a function definition, will make the output
considerably more difficult to understand for another user, who might not know the new function
introduced. This implies that the system has to be highly interactive and give the user a lot of
control about the information presentation, for example what simplification to apply. For this
reason, ‘simplification’ in the following will always mean ‘simplification with respect to a certain

"The claim that IPSE stands for “Intelligent People Stay Elsewhere” is only a vicious rumour and should not be
taken seriously (I hope).
8The UI of SYMBEX will be discussed in more detail in §6.2
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user’. §5.2 will analyse the rdle of simplification in more detail.

1.4 Symbolic execution as part of IPSE 2.5

The work described here has been done as part of the IPSE 2.5 project, the aim of which is to
build an ‘Integrated Project Support Environment’. It is intended to lie between the second and
third generation of IPSEs as described by the Alvey Sofiware Engineering Strategy (see [TW83]),
hence the name IPSE 2.5. For an overview over the project see [DDJ*85].

Major innovative aspects of this project are genericity with respect to languages and develop-
ment methods supported, and an emphasis on support for formal methods. The genericity aspect
of IPSE 2.5 implies that the symbolic execution system described here has to be generic with re-
spect to the specification language used. However, complete genericity obviously is extremely
difficult to achieve. Therefore, the ideas described in this thesis apply mainly to a specification
style based on a state-machine approach, describing a software system in terms of states and
state-transformations.

The work done on supporting formal methods in IPSE 2.5 is described in [JL88]. This part of
IPSE 2.5 which is concemed with formal reasoning is known unofficially as FRIPSE®. The main
result of this work is the FRIPSE interactive formal reasoning tool that allows a user to build up
theories and prove theorems in such a theory. See Appendix C for a brief description and some
extracts from the specification of FRIPSE. The emphasis on support for formal methods led to the
problem of validating the step from informal requirements to formal specifications, as described
above. From the outset of the project, animation of specifications was therefore considered as
an integral part of it which should help to overcome these problems. In [Kne87a], a number of
different methods for animating specifications were discussed and compared. §1.2 included a
short summary of that survey. For the purpose of validating specifications against their informal
requirements, symbolic execution is considered the most useful method, since it provides the
strongest results without making heavy restrictions on the language used.

Support for formal reasoning in IPSE 2.5 consists of three parts:

» The main part is FRIPSE, sometimes called the “RHS”,!0 which is a formal reasoning tool.
Its main functions are support for theorem proving, and the storage of theories in a structured
way.

¢ The “LHS” is the link between FRIPSE and the world of specifications and programs. Its
main functions are storage of specifications and programs and their relationships (such as
is-refinement-of ), and the generation of proof obligations or verification conditions in a
form that can then be handled by FRIPSE.

¢ The third part is SYMBEX, as described in this thesis.

9FRIPSE has recently been renamed to y,,; (pronounced mural)
!9The distinction between “RHS” and “LHS” is due to an early diagram showing the structure of IPSE 2.5.
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In future, when mentioning IPSE 2.5, this thesis usually only refers to the formal reasoning part
of IPSE 2.5, i.e. the three components mentioned above.

As part of IPSE 2.5, the symbolic execution system SYMBEX should obviously be integrated
with these other parts of this project, but on the other hand it can rely on some features to be
provided by the project in general, rather than having to be developed specifically for symbolic
execution. For example it is assumed that tools for theorem proving will be available, and do
not have 10 be provided as part of SYMBEX itself. Chapter 5 considers symbolic execution as a
formal reasoning task and the resulting relationship between SYMBEX and FRIPSE. §6.4 gives a
brief summary of the requirements put on IPSE 2.5 by SYMBEX.

The genericity of IPSE 2.5 with respect to language and development method implies that the
system has to be instantiated before it can be used, i.e. one has to provide a description of the
languages and methods to be supported. When talking about ‘IPSE 2.5’ in the following chapters
of this thesis, this usually refers to an instantiated version of a generic IPSE 2.5 system.

Note that, even though SYMBEX is developed as part of IPSE 2.5 and makes use of a lot of the
features provided by IPSE 2.5, this does not mean that it can necessarily only be used together with
IPSE 2.5. Any other formal reasoning tool with similar functionality would be equally appropriate.
The exact requirements on such a formal reasoning tool are detailed in §6.4.

1.5 Some notes on scope and structure of this thesis

The ideas in this thesis are intended to apply to any specification or programming language that
is based on the notions of states and state-transitions or, more precisely, whose semantics can be
expressed in terms of states and state-transitions. Therefore, most of the ideas described are not
appropriate for algebraic specification languages. However, within these restrictions the ideas
described are intended to be fully generic. See §4.3 for a more detailed discussion of the range of
languages covered.

Furthermore, this thesis ignores the problems arising from rounding errors in floating point
arithmetic and from over- and underflow on computers with bounded storage capacity. The latter
could be dealt with by introducing parameters expressing these bounds into the semantics of the
language, using the ‘clean termination’ approach described in [CH79].

Chapter 2 describes previous work on symbolic execution. This includes a discussion of
the ideas and motivations behind different approaches, as well as a survey of existing symbolic
execution systems. Additionally, Chapter 2 describes two methods related to symbolic execution,
namely partial evaluation and abstract interpretation.

Chapter 3 provides some of the theoretical background that will be used later. In particular,
it discusses the semantics of specification or programming languages with an emphasis on deno-
tational semantics. Based on that, the notions of execution and executability and the differences
between specification and programming languages are examined. To provide some of the back-
ground and notation needed for a discussion of the operational semantics of symbolic execution,
§3.4 gives a short summary of some concepts of term rewriting. Finally, §3.5 introduces the
relevant relationships that may exist between denotational and operational semantics.
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The main body of the thesis starts with Chapter 4, which gives a semantic definition of sym-
bolic execution. By expressing it in terms of the denotational semantics of the language used,
symbolic execution is defined generically over languages. This denotational description is fol-
lowed in §4.2 by a description of symbolic execution from an operational semantics point of
view, and a discussion of the relationship between the two. §4.2 includes a number of rules that
can be used to describe symbolic execution of some common language constructs. Language
genericity of this approach to symbolic execution is discussed in §4.3.

The operational semantics of the specification language used provide the basis for the language-
generic symbolic execution system SYMBEX described in Chapters 5-7.

Chapter 5 discusses the issues that arise from the fact that symbolic execution is considered
as a formal reasoning task, investigating the rdle played by simplification and describing how
the operational semantics of a language as described in §4.2 can be structured as a collection of
theories. ,

This is followed in Chapter 6 by a more detailed description of SYMBEX. This chapter starts
off with a formal specification of the system, followed by a description of the user interface, and
finishes with some brief notes on its implementation.

Chapter 7 contains a number of scenarios or examples showing the use of SYMBEX, which
were used to derive some of the requirements on SYMBEX. In particular, it discusses some specific
problem areas such as iteration and the handling of invariants.

Finally, Chapter 8 provides a short summary of the ideas discussed in this thesis and assesses
the achievements and limitations of this approach. These are then compared with other work, and
some suggestions are made for future work.

The appendix contains, apart from a few proofs that were too long to be included in the text
itself, a short summary of some of the VDM-notation used, and extracts from the specification of
FRIPSE. Although the latter does not actually contain any work done by the author of this thesis,
it is included for ease of reference. Also included are a glossary of symbols and an index of
definitions.
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Chapter 2

Related work

"Would you tell me, please, which way | ought to go from
here?"

"That depends a good deal on where you want to get to," said
the Cat

Lewis Carroll

2.1 Symbolic execution

2.1.1 Motivation behind different approaches and general techniques

King in his Ph.D. thesis in 1969 was probably the first to introduce the concept of symbolic
execution (see [Kin76]). Since then, a number of others have developed similar methods, but for
several different purposes. Depending on the emphasis of their work, some authors therefore talk
about symbolic evaluation or symbolic testing instead of symbolic execution.

Symbolic execution can be used for verifying programs in a number of different ways, these
methods are described below. An altemative use of symbolic execution is the generation of test
cases, also described below. Both of these applications are often based on path analysis:

Path analysis

All of the early systems for symbolic execution, such as EFFIGY or DISSECT, see §2.1.2, are based
on the use of path analysis. When symbolically executing a program, one considers the different
paths through the program separately. At any time during symbolic execution of the program,
a path condition and a path value are associated with each path. The path value consists of the
current (symbolic) values of the program variables, while the path condition consists of the con-
dition on the input values under which this path is executed. Both path value and path condition
are computed incrementally by symbolic execution of the program along the path. Whenever
a statement changing the values of program variables is encountered, the path value is updated

11
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accordingly. Whenever a branching statement is encountered, one branch is chosen and the appro-
priate branching condition is added to the path condition. The user may have to make an explicit
choice which branch of a branching statement to take; alternatively, the symbolic execution sys-
tem may automatically take all possible branches in turn, Obviously, the latter is in general not
possible for loops, since they may give rise to an infinite number of paths. A particular path
through a program and its associated choice of branches at branching statements is sometimes
called a test case, for example in EFFIGY and in DISSECT (see §2.1.2).

If adding a branching condition to the path condition causes the path condition to become
unsatisfiable, then that particular path will never be executed, whatever the input values, and the
path can therefore be ignored in any further symbolic execution. This can be valuable information
to the programmer since it might point to a mistake in the program. However, it does not neces-
sarily mean that the appropriate branch is never taken, it may be taken when execution arrives at
the same program point along a different path.

While path analysis can be a very useful approach for handling deterministic programs, it
cannot be used in the same way to deal with non-executable! languages or languages allowing
non-determinacy or under-determinedness since interpretation of specifications in such a language
does not give rise to an execution path in the above sense.

Program verification and validation

There are a number of different verification and validation methods based on symbolic execu-
tion. When using Hoare-style inference rules for describing the semantics of a language, one can
additionally provide assertions about input, output and loop invariants, and then generate verifi-
cation conditions by symbolically executing the code between two assertions. [HK76] describes
this approach in detail. This can actually be very similar to what is done in path analysis as just
described, the main difference is that in order to handle infinite parts of the execution tree, in
particular loops, one uses induction.

In this context, induction comes in two different forms. The first, as introduced by [Flo67],
uses inductive assertions annotating a program. Such an inductive assertion states that whenever
execution reaches the annotated point in the program, the assertion holds. This approach uses
induction on the computation.

The second way of using induction was described in [Bur74], he uses induction on the inpur
data. This seems most useful when dealing with recursively defined functions over data structures
with several generators and allowing structural induction. In this approach, an assertion says that
there exists a state during execution which is at the annotated point and satisfies the assertion.
This interpretation allows one to express termination of a computation as well as correctness.

A shortcoming of many current formal methods approaches to software development is the
fact that failure to verify a given program often does not provide enough information about the
cause of the failure — is it due to an actually incorrect program, or is it perhaps due to inappro-
priate assertions (in particular loop invariants), or has an existing correctness proof just not been
found yet? To some extent, this problem can be overcome by symbolic execution, which can

!See §3.2 for an exact definition of executable and non-executable languages
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help to find the place in a program where it goes wrong, if this is indeed the case, or help to find
appropriate assertions. This is why the symbolic execution system SELECT (cf. §2.1.2), for exam-
ple, is described as a system for the debugging of programs. However, since the use of symbolic
execution for debugging has been analysed in some detail before, this thesis will concentrate o
its use for the validation of specifications, although part of this work, in particular the semantic
definition of symbolic execution in Chapter 4, is of course independent of the motivation behind *
it, " °

Another technique to validate a program using symbolic execution is to annotate the program
with error conditions in appropriate places and check for consistency with the path condition at
these places. If the error condition is consistent with the path condition, then it is possible for this
error to arise. This is for example done in ATTEST (see §2.1.2), where certain error conditions
are generated automatically, for example for division by zero or array indices out of bounds. One
could possibly generate such error conditions for all partial functions used in the program, and use
these error conditions to show that the program is free of semantic errors in the sense of [CH79],
which means that partial functions are only applied to elements of their domain. By introducing
parameters for bounds on theoretically infinite types, such as N, one can even model the size
restriction on any practical computer and check for clean termination [CH79]. This check could
be done by using error conditions to ensure that the size restrictions are not exceeded.

Using error conditions such as the ones described above, one can ensure the absence of certain
errors, but of course there are some problems: first of all, consistency in general is undecidable,
so that the method cannot always be applied. Second, one can only find errors from a finite
predetermined set of errors. Thirdly, it usually only applies with respect to a certain path, but
does not guarantee that the error will not arise when coming to the same point in the program, but
via a different path.

A thirdsway of using symbolic execution as a tool for verification uses partition analysis, as
described in [CR84]. To apply this, one needs to have a specification and an implementation which
can both be symbolically executed. Then the input domain is partitioned (using path analysis) into
on the one hand subspec domains which are derived from the specification, and on the other hand
into path domains which are derived from the program. This partitioning is done such that all
elements within one such domain have the same path condition. By overlaying subspec domains
and path domains one generates so-called procedure subdomains. For each of these one can then
compute symbolic output from both the specification and the program, and check that the output
from the program is a special case of the cutput from the specification.

Test case generation

Other researchers consider symbolic execution as a method of test case generation (e.g. [Inc87,
CR84]). The usual way of generating test cases using symbolic execution relies on a heavily
simplified version of symbolic execution, based on path conditions only. This approach consists
of generating the path conditions, but not the symbolic values associated with them, and then
selecting a particular value for each path considered, i.e. finding a solution to the path condition.
One usually tries to ensure at least branch coverage (every branch at a conditional statement is
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covered at least once) when choosing these paths. A number of methods have been suggested for
choosing a particular solution that satisfies the path conditions, see for example [CR84, page 151].
In general, it is of course undecidable whether such a solution exists, even if the path condition
contains only polynomials (by Matiyasevic’s theorem?). This form of generating test cases can be
extended by basing the selection of test cases on procedure subdomains, as generated by partition
analysis (see above). This ensures that the selected test data characterize both the specification
and the implementation.

One reason for testing a program after it has been symbolically executed is that it can never be
symbolically executed in exactly the same environment (operating system, /O devices, overflow
and underflow etc) in which it will finally be implemented.

For symbolic execution of specifications there is a different reason, here we can derive test
cases for the program from its specification. This might in some cases prove useful, in particu-
lar when the program has not been verified against its specification. This approach to test case
generation is sometimes called a “black box™ approach, since the resulting set of test cases does

_not depend on the structure of the program to be tested. Generation of test cases by symbolic
execution of the program, on the other hand, is called code-dependent or path-oriented [Inc87].

F

2.1.2 Various systems

EFFIGY

Starting in 1973, King developed the system EFFGY (see [Kin76, HK76, Kin80]) as a tool for
program verification and validation. It supports symbolic execution of a simple PL/1-like lan-
guage, and already includes most of the ideas used in later systems. In particular, it is based on
the idea of path conditions, i.e. when symbolically executing a program, EFFIGY generates a path
condition for every path traversed, and associates it with the symbolic or path value computed.

There are two ways of dealing with branching statements. In manual mode, the user has to
decide at branching statements (if-then-else or while-loops) which of the possible branches
to take. In this case, she may first save the state and come back to it later in order to explore
a different branch. In automatic mode, on the other hand, all possible branches are explored.
Loops are dealt with by allowing the user to specify a maximum number of computation steps.
Only those paths are considered that reach an exit point within this number of steps. If, after
the specified number of steps, no exit point has been reached, then that path is discarded and the
system backtracks to the last branching statement with unexplored branches.

2Matiyasevi¢’s theorem (also called MRDP-theorem) states that Hilbert’s tenth problem is unsolvable (see [Dav73]

. for details): ’ .
Definition: A set S < N” is diophantine if there exists a polynomial P with integer coefficients such that

e

(X1, Xy €SSy, Ym € NPy, o X3 Y1y oo Ym) =0

Theorem: A set S ¢ N" is diophantine if and only if it is recursively enumerable.

This can be rephrased as
« Corollary: There is no algorithm to decide whether or not an arbitrary polynomial with integer coefficients has an

integer root.
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EFFIGY also allows the user 10 provide assertions at various points in the program. These
are then used to generate verification conditions for the program. Debugging is supported by
providing tools for tracing, setting breakpoints , and state saving. EFFIGY distinguishes between
‘logical’ and ‘actual’ information: for example, symbolically executing a program that computes
the factorial function, setting the maximum number of steps such that the loop-san be executed
three times, gives as a result the ‘logical’ information n(n— 1)(n—2) and the ‘actual’ information. .
n =3 (pluscase distinctions for n < 3). Unfortunately, n(n— 1) n-2)is immediately ‘simplified"to
3 — n? —2n* +2n (without user intervention). This shows the need for interactive, user-dependent
simplification as argued in the introduction of this thesis.

GIST

GIST is a specification/* automatic programming’ system being developed by Balzer and his col-
leagues at USC/ISI. One of the features provided by GIST is its symbolic execution facility
(see [BGW82, CSB82, Coh83])).

The overall idea of the GIST project is to build a programming environment based on trans-
formations. First, a system is specified in the GIST specification language, in terms of objects and
relations between them. It is then implemented by gradually transforming it into a LISP program.
Some of the transformations used for this are done fully automatically, others require the program-
mer to choose from a library, e.g. “do you want this set to be implemented as a list or a tree?”. If
the specification is changed at a later stage, part of it can be reimplemented fully automatically.

Since GIST specifications are expressed in terms of entities and relationships, they can neither
actually nor symbolically be executed in the usual sense. The notion of paths and path conditions
that can be used for programming languages cannot be applied in this case. This same problem
will havetto be faced by SYMBEX as well, it too has to deal with specification languages for which
the notion of paths is not applicable in the usual way. GIST solves this problem by considering a
specification as a set of axioms in a first order temporal logic. Symbolic execution then generatcs
simple new theorems from these axioms, using a ‘Forward Inference Engine’ called FIE. Usfng a
set of heuristics (described in [Coh84]), these new theorems are then examined to decide whether
they are ‘interesting’. Only the interesting ones are displayed to the user.

GIST is supported by a paraphraser which translates GIST specifications into English in order
to make them easier to understand (see [Swa82]). This is then extended (see [Swa83]) to explain
the results of symbolically executing a GIST specification. Without the ‘behavior explainer’, the
output from the symbolic evaluator is rather difficult to read and understand, but with it, the
symbolic evaluator seems 10 be a very useful tool for validating specifications.

After the work described above was finished, work on GIST stopped for several years and
has only recently (in 1987) started again. Unfortunately, after these recent changes some of the
different parts of GIST do not fit together any more; in particular, the behavior explainer cannot
now handle output from the symbolic evaluator. This recent work concentrates on support for
iransformations in program development, symbolic execution is no longer a central part of the

system.
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Work by Kemmerer, Rudnicki and Eckmann

In [Kem85], Kemmerer describes a system for symbolically executing specifications, and com-
pares this approach with the use of prototyping tools for specification validation. A simple version
of this symbolic execution tool has been built, which can be used for symbolically executing spec-
ifications in INA J0.3 The INA JO specification language is a non-procedural language that models
a system as a state machine, using the language of first-order predicate calculus. State transitions
are described by post-conditions which are called transforms; these describe state transitions by
specifying the values of state variables after the transition in terms of their values before the tran-
sition. State transitions cannot have pre-conditions as such, one achieves a similar effect using
conditional expressions. One can define state invariants, called criterions, that have to be satisfied
at any stage. Contrary to the view currently taken in VDM [Jon86], one has to prove that the
criterions are met after each transform, this is not considered as part of the type definition.

When talking about the requirements on a systera, Kemmerer distinguishes between a formal
model which expresses the critical requirements on a system, and the functional requirements,
‘which describe those requirements that are still necessary, but not as critical and are not themselves
expressed in the specification. Instead, the functional requirements should be derivable from the
specification. A functional requirement is then called valid with respect to a spécification, if
every possible implementation of the specification satisfies it. Similarly, a requirement may be
satisfiable or unsatisfiable. ‘Functional requirements’ could be described as symbolic test cases,
and symbolic execution is used to check whether a particular functional requirement is valid,
satisfiable or unsatisfiable.

Symbolic execution of a specification given by a state transition starts from a number of initial
assumptions describing the starting point of the functional requirements and results in a predicate
describing the state of the system after the transition. This is essentially an instantiated version of
the transform associated with the specification. One then tries to derive the result of the functional
requirement from this predicate.

[Rud87] is intended as a follow-up to [Kem85], in this paper Rudnicki discusses the relation-
ship between symbolic execution as described by Kemmerer and theorem proving as two methods
for validating specifications. He emphasizes the need to prove certain properties of a specifica-
tion, in particular the preservation of criterions (invariants). Since he only considers the form of
symbolic execution based on path analysis but not those forms used for verification and proving
theorems about a program (cf. §2.1.1), he emphasizes that symbolic execution (or symbolic test-
ing, as he calls it) is not sufficient. In his opinion, proofs of properties of a specification should be
done by hand rather than automatically (but supported by a proof checker), since failure to prove
_a statement using an automatic theorem prover does not in itself give many clues to why the proof
failed — an arguinent which leaves out the possibility of an interactive theorem prover that helps
the user to find a proof.

Next, Rudnicki suggests a symbolic execution strategy that seems to correspond roughly to a
branch coverage strategy in testing:

£

“The minimal symbolic testing of a transform consists of testing each change of the

3INA JO is a trademark of System Development Corporation, a Burroughs Company.
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state variables which can be caused by the transform at least once. The important
thing is that each possible change of the state variable should be tested by a symbolic ™
run starting in the initial state.” [Rud87, page 192]

The initial state mentioned here is defined as part of the specification. With_this strategy, one
therefore has to build, for every change of state variables in a transform, a sequence of transforms,
starting in the initial state such that it reaches the relevant part of the transform. o

In [KE85], Kemmerer and Eckmann describe a different approach to symbolic execution,
which was implemented in the UNISEX-system. The original version of UNISEX was implemented
by Solis as part of his master’s thesis [Sol82). UNISEX is a system for symbolically executing
PASCAL programs, which provides two modes, verify mode and test mode. Symbolic execution
in verify mode is based very much on the ideas described in [HK76] for verifying programs
(cf. §2.1.1). To verify a PASCAL program, the user has to annotate it with a number of assertions,
including at least an entry and an exit assertion, plus an assertion for each loop (the loop invariant).
UNISEX then generates the relevant proof obligations by symbolically executing the code between
two assertions. This can be driven either manually, in which case the user has to decide which
branch to take at a branching statement, or automatically. In the latter case, UNISEX covers all
branches by pushing the false branch on a stack and continuing along the true branch. When the
end of the path is reached at an assert or exit statement or the end of the program or subroutine
being verified, then another branch is popped from the stack and executed symbolically.

In test mode, UNISEX uses path analysis to generate path conditions and path expressions.
No assertions are needed, and even if they are provided, paths end at the end of the program
rather than at the next assertion. Output from UNISEX is mainly intended to show the user the
behaviour of the program and thus validate it, rather than formally verify the program against
some ass¢rtions. ‘

In a future version, a theorem prover is to be added to UNISEX which checks at a branching
statement whether the path condition implics that only one branch can possibly be taken, .and
which is also used to prove the proof obligations generated. In the version described in [KE85],
the user has to take the place of the theorem prover and answer the relevant questions from the
system.

The expression language of UNISEX used for assertions consists of the expression language
of PASCAL plus the additional keywords forall, exists and implies. Assertions are provided
as comments in the program to be executed symbolically, so that no editing is needed before the
program can be compiled. The programming language supported is a sub-language of PASCAL as
defined in [JW75], excluding for example subroutines with side-effects.

DISSECT

DISSECT (see [How78a]) is another system for symbolic execution which uses path conditions.*
It tries to solve them by trying to find an actual value as “test case”. DISSECT has been imple-
mented in LISP and can be used to symbolically execute FORTRAN programs; the implementation

“This is the reason why the system is called DISSECT, it allows the user to ‘dissect’ a program and analyse the
different paths separately.
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of DISSECT was completed in 1976.
The DISSECT symbolic evaluator takes as input a FORTRAN source program and a file with
DISSECT commands that are to be applied to the program. There are three kinds of commands:

e input commands assign actual or symbolic values to variables

e path selection commands determine which branch to take at a branching statement, or how
many times to execute a loop

e output commands are used to print out the values of program variables

Additionally, these commands can be combined in various ways, for example using conditionals.
Every command is associated with a particular linc in the FORTRAN program.

Every symbolic evaluation then effectively explores one path (called ‘test’) through the pro-
gram, by determining its path condition and expressing the values of program variables at any
point in the program in terms of the values assigned via input commands. It is possible to com-
bine different paths (e.g. both branches of a branching statement), but these are effectively handled
as different symbolic evaluations.

DISSECT runs in batch mode rather than interactively. According to [How78a¥ this is a de-
liberate choice, since the selection of these paths or tests has to be done carefully and therefore
would be difficult to do interactively.

In [How78b], Howden analyses a number of methods for the validation of programs. There he
applies these methods, which include various test methodologies and symbolic execution, to six
short programs in different languages (COBOL, PL/1 and ALGOL) containing bugs. His conclusion
is that symbolic execution helps to find about 5% of errors in addition to those found by combining
various methods of testing, and is a “natural” way of discovering errors for about 10-20% of
all errors. The errors found by symbolic execution are mainly those where a wrong variable is
referenced.

However, these results cannot really be applied to the work described in this thesis, since
Howden only considers imperative programming languages, and only considers short programs,
four out of the six programs investigated contain less than 30 lines of code, the longest one contains
about 450 lines of COBOL code.

Dannenberg and Ernst’s system

The paper [DE82] by Dannenberg and Emst describes another system for symbolic execution
which is also based on path conditions. It grew out of a project to design and implement a
‘mechanical verification condition generator, but it is not clear from [DE82] whether this system
has actually been implemented.

Dannenberg and Emst use inference rules to describe the semantics of a small imperative
programming language. In addition to the usual constructs, this language contains a confirm
construct for expressing assertions and a maintaining argument in while-loops for express-
ing invariants, which are essentially a special case of assertions. Statements using confirm or
maintaining are used as a specification of the program. The basic unit of the inference rules
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is a statement of the form S, PC\A’ which expresses the correctness of the statement list A with
respect to its specification, given a state S and initial path condition PC. -

Using these inference rules, Dannenberg and Emst then propose to symbolically execute the
code in between two assertions to generate verification conditions. They use symbolic execution
solely as a tool for verification condition generation, but not for example for directly generating
information about the state and the path condition that is then fed back to the-user. 2

An important feature of their work is that it shows a possibility of handling functions with
side effects. For this purpose, they introduce attribute grammars and describe the inference rules
describing symbolic execution as production rules in the grammar, where the state and path con-
dition are represented as attributes. They also give rules for handling more complicated language
constructs, such as multiple-exit loops and procedures with multiple exits. Unfortunately, they do
not explicitly address the problems of correctness and completeness of their rules.

ATTEST

The ATTEST system (see [Cla76, CR84]) is a symbolic execution system mainly intended for
generating test data for FORTRAN programs. It uses path conditions by treating them as a system
of constraints. If the path condition only contains linear constraints, then ATTEST solves it, using
a linear programming algorithm. The result is then used both for identifying (un)feasible paths
and for generating a set of test cases satisfying branch coverage. [Cla76] claims that this actually
covers most cases, that most constraints in practice actually are linear.

ATTEST is not only meant for test data generation, but for program validation in a more general
sense. This is why ATTEST actually builds up a symbolic representation of the program output
associated with each path condition, which would not strictly be necessary for test data generation.
ATTEST also helps to generate error conditions (e.g. for division by zero) and check them by adding
them to the path condition and checking for consistency, as described in §2.1.1. However, since
this consistency check is also based on the linear programming algorithm, it can only handle linear
path and error conditions.

Loops are handled by trying to make their effect explicit by first expressing variable values
recursively in terms of values on previous iteration (using so-called recurrence relations), and then
eliminating this recursion, i.e. solving the recurrence relation. This is done by introducing a new
variable denoting the number of executions of the loop. The result is then used to create a loop
expression which replaces the loop itsclf. Unfortunately, in most cases this will not work, since
many functions can only be expressed using recursion or loops. In these cases, ATTEST cannot
handle the loop (see [CR84, page 147]). Instead, the user has to explicitly specify the number of
iterations of the loop. Furthermore, like most systems ATTEST can only handle a single path at a
time, at branching statements the user has to make an explicit choice about which branch to take.

SELECT

SELECT is a symbolic execution system developed by a group working at SRI (see [BEL75]). The
main purpose of SELECT is the debugging of programs. It is intended to complement mechanical
program verification and overcome some of the (theoretical and practical) problems associated
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with this approach. SELECT is built from the expression-simplifier part of the SRI Program Verifier
by adding facilities for symbolic execution of programs written in a subset of LISP.

Like most other systems, SELECT is based on the notion of path conditions. At branching
points, the system considers all feasible branches and the appropriate predicates are added to the
path conditions. For loops, the user decides on the maximum number of iterations she wants the
system to take. For each path, SELECT tries to maintain an example input, i.c. a solution to the path
condition. This solution can then be used as actual test data for the program. Several different
algorithms have been tried for solving the path conditions, which all handle linear equalities and
inequalities, plus a few special cases.

In addition to generating (simplified) symbolic values of program variables and actual input
test data, SELECT also allows the user to annotate a program with assertions; according to [BEL75],
these can serve as

e executable assertions, i.e. the assertion is a program in itself that is executed when the
appropriate position in the program is reached (‘ Assertion’ does not seem to be an adequate
name for such annotations).

e constraints, which are simply added to the path condition. This enables the user to ensure
that the test data generated satisfy some additional conditions.

e checkpoints; when execution reaches such a checkpoint, the negation of the assertion is
added to the path condition, and the system checks the result for consistency by trying to
generate a solution to it, using the general solver for path conditions.

Harvard Symbolic evaluator

The symbolic evaluator is a central part of the Harvard Program Development System PDS. PDS
supports programming in the EL1 language, an imperative programming language which supports
constructs such as records, pointers, recursive procedures, and several ways of sharing of variables,
in addition to the usual assignments, loops etc.’

The basic idea behind the system is to derive semantic information about a program separately
from its use in any tools such as those for exception detection, program verification and validation.
The advantage of this approach is that semantic analysis is only performed once, instead of each
tool performing its own analysis. Additionally, this guarantees that all tools assign the same
semantics to the constructs of the programming language while, on the other hand, it is easier to
adapt the tools to a different programming language, since only one analyser has to be rewritten.

. This semantic analysis is based on symbolic evaluation, and the results of the analysis are then
stored in a “program database”. Other tools can use this information to reason about the program
without having to re-analyse the program, and can add further information which they deduce to
the data base. Note that with this approach symbolic evaluation is used as a static analyser, not a
dynamic interpreter.

> 5See [Plo84] for a description of the rdle that symbolic evaluation plays within PDS, and {CHT79] for the technical
details of the symbolic evaluator.
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[CHT79] describes in some detail the simplification of expressions in the context of symbolic
evaluation. However, the emphasis on symbolic evaluation providing input for further analysis by
other tools, not by humans, means that a ‘simpler’ expression might be considerably more difficult
to read for the human user. The simplifier generates suitable normal forms of expressions, based
partly on CNF, -

Loop analysis is based on different variations of solving recurrence relations. This involves *
identifying the number of iterations of a loop, and expressing the values of variables after any one
iteration in terms of their values after the previous iteration. From this, one then tries to ‘solve’
the recurrence relation, i.e. transform the recursive equation into an explicit one. If this is not
possible, one ‘forces’ a solution by creating a particular form of lambda expression, similar to
description values as used in this thesis. These recurrence relations also help to generate loop
invariants automatically, at least in some easier cases.

Based on the results of semantic analysis using the symbolic evaluator, a number of other
tools, such as a verification condition generator and a source-to-source optimiser, have been built.
However, in about 1985 the project was abandoned and replaced by a new project called E-L.
The main reason was that PDS had only been implemented on a PDP-10, and rather than just
port PDS to a new machine, it was decided to start again from scratch. An additional reason
was that they wanted to introduce a new approach to software development, based on the use of
transformations. This new system does not yet support symbolic execution, but may dosoata
later stage.

REDUCE

REDUCE, as described in [AGPT85], is a system for program reduction based on symbolic ex-
ecution, as introduced by [Kin80]. This is a program transformation technique for removing
superfluous parts of a given program while leaving the original structure intact. For example, if
a program contains a conditional with condition x > 0, and it subsequently becomes known that
the program will only ever be used on input values such that x > 0, then the conditional may be
replaced by its then-part, the else-part may be removed. REDUCE supports the reduction of such
conditionals for a class of functional languages. Its main achievement, according to [AGPT85],
is that it allows “symbolic constants which are assumed to denote subsets of data domains” which
allows one to express certain constraints on the input domain. These ‘symbolic constants’ are
predicates which are used to express input and path conditions. However, this claim seems not
quite justified since other systems, such as EFFIGY or UNISEX, do allow a user to add assertions
on the input domain, with a similar effect.

REDUCE does support a certain amount of genericity with respect to the language handled,
it can symbolically execute a whole class of functional languages. This is achieved by defining
the “symbolic semantics” of a language using predicate transformers [Dij76] on the symbolic
constants.

However, in the opinion of the author of this thesis, it is not appropriate to call the technique
used in REDUCE “symbolic execution” and it certainly does not fit the semantic model given in
Chapter 4. This is because it does not analyse the relationship between individual input and
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output values, for a set of input values. Instead, it analyses the relationship between sets of input
values and sets of output values, and is therefore much closer in spirit to the technique of abstract
interpretation as described in §2.3.

2.2 Partial evaluation

Partial evaluation (also called partial computation) and mixed computation are program transfor-
mation methods making use of partial knowledge about the input data to the program. In partial
evaluation one does those computations that do not depend on run time values and can therefore
be done at compile time. Another way of saying this is that partial evaluation is used for pro-
cessing the static semantics of a program. In [EJ87], Ershov defines partial evaluation and mixed
computation by splitting up the input data into two scparate components d; and dy, as follows:

Definition 2.2.1 (Partial evaluation, mixed computation) Let P be programs, let D be data,
_and Sem: P XD — D be the functional semantics. Then partial evaluation is a function Part: P X
D — P such that

Sem(p, (dy, d3)) = Sem(Part(p, d1), d2). s

Mixed computation is a function Mix: P x D — P X D such that
@', d) = Mix(p,d) = Sem(p,d) = Sem(p’, d")

It follows that partial evaluation is a special case of mixed computation. The idea of partial
evaluation is based on Kleene’s s—-m-n theorem (see e.g. [Cut80, §4.4]). It has been used for a
variety of different purposes, including e.g. program simplification and compiler generation.

Alternatively, partial evaluation can be described as a form of specialisation (as done in
[EJ87]), since it takes as input a program p and partial description d of the input data to p and
returns a specialised program p, which is equivalent to p on all data satisfying d. An area of par-
ticular research interest is the self-application of this specialisation process, where one considers
programs themselves as data. If one can program the specialisation process in a program Special,
then Special is called an autoprojector [Ers82]. In this case, Part(Special, p) is itself a program
that takes a partial description d and retums the specialised version pg of p, and Special, is a
generator of specialisations of program p.

Some standard examples are

e use a general context-free parser Parser and a fixed context-free grammar G to get a parser
Parserg forG

e let Inz be an interpreter for a language L. Int takes as input an £-program p and some data
d, and runs p on d. Then

Sem(int, (p, d)) = Sem(Part(Int, p), d)

i.e. Part(Int,p) is a target program, namely the compiled version of p, and Specialp, is a
compiler for £
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e let Int, p and d be as before. Then because of
Sem(Special, (Int, p)) = Sem(Part(Special, Int), p)

Par«(Special, Int) is a compiler for the language interpreted by the interpreter /nt, and
Specialspeciat is a compiler generator that transforms interpreters into compilers.

These examples are the main impetus behind the development of partial cvaluatioxi, most
of the work so far has been done on compiling and compiler generation. The use of partial
evaluation for compilation and compiler generation was first described in [Fut71] and has since
been implemented in several different systems. The use of partial evaluation for generation of
compiler generators was probably first described in [Tur79], a simple implementation of it is
described in [Ses85].

Both symbolic execution and partial evaluation are characterised by the fact that, given a
program and some, but not complete, information on the input data, one tries to extract as much
information as possible. However, in partial evaluation this information is used before the program
is executed, in order to transform it into a new and more efficient program, which is functionally
equivalent to the original one for all input data satisfying the information given.

In symbolic execution, on the other hand, this information is only provided at run-time, too late
to be used for partial evaluation. It is then used to derive as much information as possible about
the output of the program (including possible side effects), but without changing the program
itself. This makes it possible to add new information during execution, or to execute the program
repeatedly using different information.

Of course, these advantages have to be paid for: in symbolic execution, adding new infor-
mation will often slow down the system, while the program generated by partial evaluation will
usually be faster the more information is given.

A large amount of work has recently been done on partial evaluation (see e.g. [BEJ87]), mainly
in Japan, USSR and Denmark. So far, most work on partial evaluation has been done for simple
declarative languages such as pure Lisp, pure PROLOG or A-calculus. This seems to be because
these languages have a rather simple operational semantics, and most partial evaluation techniques
are based on the operational semantics of the language dealt with.

2.3 Abstract interpretation

Abstract interpretation is another method for handling partial information; it is based on the idea of
mapping input data into a different, ‘more abstract’ domain and performing the computation there.
This will often be much easier to do and still provides sufficient information for certain purposes.
In particular, it is often used to determine certain properties of programs without actually executing
them, e.g. for type inference/type checking (see [CC77b]) or strictness analysis (see [Myc81]
or [Pey87, §22]).

Another way to view abstract interpretation is to say that it provides (usually at compile
time) information about the context of a program (fragment) which enables one to guarantee
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the correctness of some program transformation in this context. When viewed this way, abstract
interpretation is closely related to partial evaluation: it provides the (partial) information which
is then used for partial evaluation.

One of the first to describe abstract interpretations was Sintzoff (see [Sin72]), after that the
subject was mainly developed by Patrick and Radhia Cousot (see [CCT77a, CC77b}), who used
it for analysing flowchart programs. [Myc81] extended these ideas to functional languages and
mainly used them for strictness analysis. (A function

fiD1X...XDi%X...xDy—C;(dy,...,di, ..., dn) v f(dy, ..., di, ..., dn)

is strict in d;, if for all dy, ..., di1,din1, ..., dn: f(d1, ..., L, ..., dn) = 1) After that, abstract
interpretation was developed a lot further by a number of different researchers (see e.g. [GI85]
or [AH87]), who mainly used it for optimising compilers for functional languages, in particular
for strictness analysis.

Knowledge about strictness of functions is mainly used in compiling functional languages. If a

_function is strict, then call-by-need can safely be replaced by call-by-value. According to [Hug85],

this can lead to an improvement in performance by a factor of about three to five. Additionally, it
helps to make use of parallelism, since for a strict function it does not matter whcthg the argument
is evaluated before or when it is needed.

As an example, consider the multiplication

(-357) * 1078 @2.1)

Instead of actually evaluating this term, it might (for a particular application) be enough to abstract
it and use the ‘rule of signs’

GO =0) (22)
to infer that the result of the multiplication is negative. In other words, we “abstract away’ from
the specific values and perform the computation in a new universe of abstract objects (=), (+)
and (0). One way of describing this is to say that abstract interpretation provides an altemnative
denotational semantics for a language, based on a simpler abstract domain than the standard one.

An alternative to using the rule of signs would be to use the rule

odd * even = even 2.3)

to infer that the result must be even. If we want to know the number of digits of the result, we

can use the rule
(3-digit-number) * (4-digit-number) = (6- or 7-digit-number) 2.4)

In this last exarﬁplc it is no longer possible to give an exact answer. Given the sizes (in number
of digits) of the factors, it is not possible to uniquely determine the size of the product without

further information.
The rules described above are often used as checks of the correctness of a computation. An-

“other way of looking at them would be to consider them as rules for (sub-) type inference. In the
following, we describe the general concepts of abstract interpretation in terms of lattice theory,
mainly based on [Myc81].

g
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Definition 2.3.1 (Adjoined functions) Let (L, ;) and (M,Cy) be complete lattices. We say that
the functions Abs: L — M and Conc: M — L are adjoined if they are monotonic and for all ke L,

meM
Abs(D) Ty m = I C, Conc(m)

—

They are exactly adjoined, if they are monotonic and for allle L,me M

—

Conc(Abs(D)) dp |

Abs(Conc(m)) =m
The intuition behind this definition is that adjoinedness makes elements from L and M comparable
under the partial orders. Exact adjoinedness ensures that taking a concrete example of an abstract
element and abstracting it again returns the original abstract element.

For a partially ordered set S, let LS denote the least upper bound of S, let NS denote the
greatest lower bound of S.

Lemma 2.3.2 a) If Abs and Conc are adjoined then
Conc(m) = U {l| Abs(l) Ty m}
Abs(l)= N {m |1 C Conc(m)}
b) If Abs and Conc are exactly adjoined then
Conc(m) = U {I| Abs(l) = m}
c) If Abs and Conc are exactly adjoined then Abs is surjective and Conc is injective.

Given lattices L and M and a function Abs, this lemma provides a test whether there exists a
function Cone s:t. Abs and Conc are (exactly) adjoined. Note that, even if Abs and Conc are
exactly adjoined, neither Abs(l) = U{m | I = Conc(m)} nor Abs(l) = N{m | I = Conc(m)} need to
hold, since ! may not be in the range of Conc.

The first example above can be translated into this model if we let L be the powerset lamce
of Z and M be the powerset lattice of {{+), (-), (0)}.¢ Multiplication on Z and on {(+), (), (0)} is
defined in the obvious way. Then define

+ ifx>0
Abs({x})=4¢ (=) ifx<0
) ifx=0

Abs(sy U 82) = Abs(sy) U Abs(s?)

Alternatively, we could define L to be the lattice containing { },Z and all finite subsets of Z.
In this case Abs and Conc are still adjoined, but no longer exactly adjoined, since for example

Abs(Conc({(+),(0)})) = Abs(Z) = {(+),(0). ()}

We can now define what it means for a function to abstract some other function:

SFor the above example it would actually be enough to let L be the lattice containing {}.Z and all one-element
subsets of Z (with ordering C), and similarly let M be the lattice containing { }, {(+)}, {5}, {®)}. {(+). (). {0)} (also
with ordering C).
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Definition 2.3.3 (Abstraction) a) Given two lattices L and M, we say that M abstracts L if there
exist functions Abs: L — M and Conc: M — L which are exactly adjoined.

b) Let Ly,Ly be two lattices, and let My, M be lattices abstracting L1, Ly respectively via
functions Abs; and Conc;. Let g be a function g:Ly — Ly and h be a function h: My — M,. We
say that h abstracts g (or, strictly speaking, (h, M1, M>) abstracts (g, L, ,Ly) w.rt. Abs; and Conc;)
ifforallle Ly

Concy o ho Absi({) 31, 8(1)

Note that one does not require equality between Concz o h o Absy and g, only inclusion, since
otherwise # might be non-computable. One therefore demands this safety property instead, which
says that the result of applying the abstracted function is allowed to be too large, but never t00
small.

How can one find the abstraction h of a function g, given the lattices L1, Ly, My, M2 and
the functions Abs;, Conc; as described in the above definition? To do this, one has to replace all
constants and basic functions in the body of the definition of g by their abstract versions. Variables
. remain unchanged.

If g is recursively defined as g = F(...,g,...), then this replacement results in a recursive

definition of 4, namely h = F¥(... , h, ...), where F# denotes the abstracted version ojthe functional
F. If the functional F* is continuous, then h can be defined as its fixpoint LI{(F*)i(.. L) ie
NY.

A standard example of the application of abstract interpretation is strictness analysis: for this
one uses the abstraction (cf. [Pey87, §22])

abs L
abs x

0
1 ifx#1

Then f is strict iff Eval[f(1)] = L, which is true iff abs(Eval[f(1)]) = 0.
One now has to find a suitable abstract interpretation Eval* of Eval. This should satisfy the
safety property
abs(Eval[[E]) C Eval*[E]

for any expression E. In this case, the safety property demands that abstract interpretation should
never suggest that a function is strict if this is not the case.

Let f be defined as f(p, ¢, r) & if p = 0 then g+ else g+p. Since a+bis defined iff both a and
b are defined, we have +* = -. Similar for = and if-then-else. 0 is always defined and therefore
0% = 1. Then a suitable abstract interpretation would be

*(p.q,r) -= Eval’[if p = 0 then g+ r else g+ p])
= iffp =¥ 0* then® g +* relse’ g +¥p

itffp- 1 then* g - relse’ ¢g-p

p-1)-(g-nv(g-p)

P4

where a v b is defined as 1 if at least one of a and b is 1, and O otherwise.
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Then

and f is strict in p and q.

*0,1,1)
a1,0,1)
ffa,1,0)

il
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Chapter 3

Theoretical background

They gave me courses on love, on intelligence, most precious,
most precious. They also taught me to count, and even to reason.
Some of this rubbish has come in handy on occasions, | don't
deny it, on occasions which would never have arisen if they had
left me in peace.

Samuel Beckett: The Unnamable

3.1 Language semantics

Consider a specification or programming language £1. Unless otherwise stated, I shall in future
consider a program as a special kind of specification. The differences between the two will be
discussed in §3.3. Specifications are a certain class of £-terms, usually containing free variables
called input and output variables and state variables. §3.3 will say more about what distinguishes
specifications.

For simplicity, I shall from now on assume that specifications only use a single state variable,
but no other input or output variables. Since the state variable might be of arbitrarily complex
type, this is no real restriction of generality.

The semantics of a language describe the ‘meaning’ of terms of the language in some way.
Here the following definition of meaning will be used:

Definition 3.I.1 (Meaning of specifications) The meaning of a specification [specl! is a rela-

tion R between input and output states.
Non-termination or abortion is described by the output state L., ie. R(c, L) describes the

fact that, starting from state O, execution of [specll may not terminate or abort. We require that
R(L, L), and R(L, 0) only if 6 = e

1Terms in the object (or specification or programming) language are written in Strachey brackets [...]}, in order to
distinguish them from terms in the (meta-) language used for describing the semantics of the term

28
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We also require that for every state oy, there exists at least one state o3 (possibly L) s.t.
R(01, o). =

For deterministic programs, R will actually be a function from states to states rather than a
relation. ~.

The requirement R(L, L) A (R(L,0) = o = L) was introduced to ease the description of
composition. It essentially describes the fact that if a specification never starts to be interpréted?
because the one interpreted previously fails to terminate, then interpretation of this specification
also will not terminate. Equivalently this could be expressed as R(L,0) & o= .l.

The reason for using L. as a state in its own right, rather than for example introducing a
termination set T of states, as done in VDM, is that this will make it easier to describe symbolic
execution and to distinguish between non-termination of symbolic execution itself and termination
with the result “execution does not terminate”. Additionally, composition is easier to describe this
way. However, provided two relations R are considered equivalent if they agree on all pairs of
states whose first element is in 7, then this is only a matter of taste and the two models are
isomorphic: given R as above, (R1,T;) can be defined as R (01, ) = R(01, ) A & # L and
T = {0 | =R(0o, L)}. Conversely, given (R, T1) we can define R(01, 63) = R1(01,03) v (01 £
ThAaom= .L) .

There are a number of different ways of describing the semantics of a programming or speci-
fication language, the most common ones are (cf. {Sch86, pages 3f] or [Sto77, §2])

operational semantics: the meaning of a construct of the language is given by explicitly stating
its effect, the operation that it evokes (see for example [Plo81]). Given an input state for
a specification, the operational semantics of the language provides an algorithm to find the
appropriate output state.

Another way of describing oﬁerational semantics views only input variables as free variables
of a specification. In this case one substitutes the input data for the free variables of the
specification term, and then rewrites the resulting ground term into normal form in a rewrite
system which is given by the semantics of the programming language (cf. [Sch86, §10.7]).
This normal form is then the ouiput from executing the specification. For example, the
semantics of A-calculus can be given this way, using f-reduction etc.

denotational semantics: the meaning of a construct of the language is described by giving it a
‘denotation’, i.e. by translating it into a different structure and modelling the effect of state-
ments of the language there. This different structure is usually, but not necessarily, based
on domain theory as introduced by Scott (see [Sto77, Sch86]). One possible alternative is
to express the denotations in the language of predicate calculus, this is called predicative
semantics (as introduced in [Heh84}).

axiomatic semantics: the meaning of a language is described by axioms that can be used to prove
theorems about (specification) terms in the language. These axioms act as constraints on

ZFrom now on, I shall distinguish between inferpreting a specification and executing it. Interpreting a specification
transforms one stale into another according to the meaning of the specification. Executing it additionally requires that
one has an algorithm for performing this transformation. These issues will be discussed in more detail in §3.2.



CHAPTER 3. THEORETICAL BACKGROUND 30

the relation between input and output variables. The usual style for such axioms is Hoare
logic (cf. [Hoa69, Apt81]), using input and output assertions. A similar approach is the use
of predicate transformers and weakest preconditions, as introduced by Dijkstra in [Dij76].

The following is mainly based on denotational semantics. By giving a denotational semantics
to a language L1, one translates it into another language £, called semantic language, which
is considered to be ‘understood’, i.e. the meaning of its constructs is known. In other words,
one explains the semantics of £; in terms of the semantics of £;. The translation is given by
a recursive function from terms in the language £ to terms in £. This translation is called
valuation function. Usually, £, will have some theory associated with it, in that case it will be
more adequate to say that we understand the theory associated with L2, rather than the language
itself. Common choices for £, with an associated theory are the languages of Scott’s domain
theory, of predicate calculus, of partial recursive functions, or of A-calculus. In the following, the
language of LPF (cf. Appendix B.2), the logic of partial functions, is used.

Definition 3.1.2 (Valuation functions) A valuation function M maps terms of a language L to
their meaning (denotation), an element or set of elements of the abstract or semantic domain. We
require that valuation functions are defined structurally, i.e. the meaning of a term is defined in
terms of the meaning of its subterms.>

The valuation function may map to a set of elements of the abstract domain in order to handle
non-determinism and under-determinedness. Alternatively, one might introduce power domains
instead.

A valuation function may also take additional arguments such as the environment or contin-
uations, in order to handle more complicated language constructs. This will in the following be
handled by ‘currying’ the valuation function and tuming the denotation of the construct itself into
a function. In particular, the denotation of a program term is usually defined as a function from
states to states. Variations are used for non-deterministic programs, whose meaning is often given
as a binary relation between states or, equivalently, a function from states to sets of states, and
for under-determined programs, whose meaning is often given as a set of functions from states to
states.

Usually, one introduces several different valuation functions for different classes of terms,
such as commands, Boolean expressions etc. The valuation function for terms in class C will
be written as M. Figure 3.1 describes the valuation functions on predicates and specifications.
Specifications are terms in the language that denote a binary relation on states. The definitions in

-Figure 3.1 only give some properties of Mpreq and M, that will be needed later. Obviously,
for any giverr-language one will want to define these functions in much more detail, and Pred
and Spec-should probably allow expression of non-recursive functions as well. The conditions
on these two valuation functions ensure that the languages of predicates and specifications are
‘reasonably expressive’, at least they should allow one to express all (partial) recursive functions
of the appropriate type, for example by expressing a suitable recursion scheme for defining the
function.

3This property is sometimes called the ‘denotational rule’.

o7
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Given a set Name of identifiers (names) and a set Val of values, a state is a map of type

¥ = map Name to Val,
Define -
T.=Xu{l} —
The valuation function on predicates (over states) is some function
Mpreg:Pred—> %, — B
such that
Vf: {partial recursive functions £, — B} - 3[¢]: Pred - M predl@ll = f
The valuation function on specifications Spec is some function that satisfies
Mspec (Ispecl: Spec) R: (2o xZy) » B
post Vo: Iy - [R(L,0) = o=.L]A30":Z, R(0, )
and

Vf: {partial recursive functions £, x Xy — B} - Il[spec]: Spec -
MSpec[[n"pec]] =f

Figure 3.1: Valuation functions for specifications and predicates

The valuation function M), for specifications maps a specification to a binary relation on
states that is interpreted as the input/output relation induced by the specification. Since the in-
vestigations in this thesis are restricted to specification languages that are based on the notions of
state and state transitions (cf. §1.5), this seems the most appropriate approach.

For example in VDM, if [spec] contains a pre-condition and oy is a state not satisfying this -
pre-condition, then M spe [[specl(o1, 0») is true for all ¢z: Z. If 0y does satisfy the pre-condition,
then Mpecllspecl(o, L) is false.

Note that the specification of £ with function Mgpe is sufficiently abstract in the sense
of [Jon86, page 233].4

The definition of M .. in Figure 3.1 can easily be extended to cover sequences of specifica-

tions:

Mspeclllspecl] & Mspecllspecl

MSpec[[[specl’ ySpeCn—lySpecu]]] é. MSpeclHSpeclr cesy specn—l]]] o -MSpec[[Specnn

using overloading of M spec.

4A model is sufficiently abstract if, for any two different states, one can find a sequence of operations that dis-
tinguishes them. This is very similar to full abstraction of the denotational semantics of a language in relation to its

operational semantics.
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3.2 Execution and executability

We now define what exactly is meant by the word ‘language’:

Definition 3.2.1 (Languages) A (programming or specification) language L is described by a
syntax® and a semantics. The syntax is given in terms of production rules and possibly some
additional restrictions. The semantics of a language may be given in any of the styles described
in§3.1.

In order to emphasize the fact that a term has been formed according to the production rules
and it satisfies the additional restrictions on the syntax of L, it will be called a well-formed term.

The additional restrictions mentioned in this definition are used to ‘weed out’ special cases of
terms, when this would not (or at least not easily) be possible using only production rules. For
example, most languages demand that a variable is declared before it can be used. These additional
restrictions are often called context conditions, and they can be considered as part of the static
semantics of the language. However, in this context it is more convenient not to do so but to
consider them as part of the syntax of the language.

Definition 3.2.2 (Execution and interpretation) Given a specification ([specl, interpretation of
[spec] is a state transformation from a state O to a state o’ s.t. Mgpllspecl(o,0”). Here
“transformation into state L.”" denotes non-termination or abortion of the interpretation. interpret
is defined as an arbitrary function

interpret.Spec > Ly — Ly
that satisfies
Mpeclspecl(o, interpret{[spec] o)

If this state transformation is given by a (partial) recursive algorithm, then interpretation of [ spec]]
is called execution.

Note that in general the result interpret([spec]o is not defined uniquely by this definition, since
[spec]l may be under-determined or non-deterministic. When dealing with such a specification,
one has to force the interpretation of [spec] into choosing a particular value out of the set of
possible values.

Definition 3.2.3 (Executable languages) A language L is executable if every specification term
in C can be executed in the sense of Definition 3.2.2.
An L-term is executable if it is a term of an executable sub-language of L.

A special-case of this is a language £ with operational semantics. In this case, the recursive algo-

rithm is given explicitly by the operational semantics, and the language is therefore executable.
A difficulty that arises in this context is that even though recursive functions do model the

hardware operations within a computer to a certain extent, they do not take into account time

5Strictly speaking, one has to distinguish between abstract and concrete syntax. Since the distinction is irrelevant
in this context, it will be ignored in the following.
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and space restrictions that apply to any computer in the real world. Strictly speaking, almost all
language constructs are therefore non-executable on real computers, since for sufficiently farge
arguments, the capacity of any computer will be exceeded. However, Definition 3.2.3 ignores
such restrictions and says that a language is executable if it is executable given a large enough

—

computer and unlimited (but finite) time. -

3.3 Specifications and specification languages

The reason for writing a specification instead of starting with the implementation is that the spe-
cification may be more abstract in one or more of the following ways:

Data In specifications one may use abstract data types (e.g. sets) that are not provided by the
implementation language. This implies that in a specification it is easier to describe objects
in terms of the underlying problem domain rather than in terms of the computer technol-
ogy used. Some programming languages do support some more abstract data types, €.g.
me too [Hen84, HM85] and SETL [SDDS86], but they can never be as general and expres-
sive as is possible for specification languages.

‘What’ vs ‘How’ A specification does not have to state how a certain goal is going to be achieved,
its purpose is to state what the program is supposed to do. To a certain extent, this is also
achieved using high-level programming languages, but again, specification languages can
go much further towards reaching this goal than programming languages can.

Property oriented In a specification, we can describe a system in terms of its properties. This
seems to be the most important aspect of abstraction in specifications and can be achieved

using
e pre-/post-conditions: operations can be specified using pre- and post-conditions. These

can best be described in some logic notation, for example using Horn clauses, or first
order predicate calculus (classical or LPF, see Appendix B.2), or temporal logic.

e algebraic representation: the system is described by building an algebraic model,
where a data structure is defined in terms of the operations that can act on it.

In each of these, programming languages can go some way towards reaching these goals, but
they can never go as far as specification languages can. This is because of both efficiency and

theoretical reasons.
In the following, I am going to describe some principles that may be used to distinguish

programming and specification languages.
Definition 3.2.3 raises the question whether there is any language construct which is not exe-

cutable but
o would be useful in a programming language, or

e isused in any (programming or specification) language
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Imagine for example the function V: Formula — B that returns true if its argument, a formula
of second-order predicate calculus, is valid, and false otherwise. Obviously V is not recursive
and therefore not executable in the sense of Definition 3.2.3. However, for some formulae ¢ it is
possible to determine V(9), using a recursive algorithm. One might therefore want to include the
function V in the programming language. In this case, it would be up to the programmer to ensure
that V is only applied to such arguments as can be handled by the recursive algorithm supplied,
other arguments must be filtered out beforehand.

Although such a construct is conceivable as part of a programming language, this particular
one has never been used as such. On the other hand, there is at least one construct available in
most programming languages which is not in general executable, namely the while-statement.
Execution of this is usually defined using a recursion equation, but it is not in general decidable
whether any given state is in the domain of the least fixed point of this equation. It is the program-
mer’s responsibility to only apply the construct in states in the domain of the recursion equation,
i.e. ensure that the loop terminates.

For while-loops, the problem of executability is thus solved by providing a clear and natural
operational semantics, and making the programiner responsible for ensuring the executability of
any terms using while. For specification languages, on the other hand, one does not need to be
quite as strict. Here one may allow terms and constructs that are non-executable, or for which
at least one cannot decide in advance whether they are executable or not, as long as they are
considered useful. Tt is then up to the specifier to ensure that a specification denotes a recursive
function. (This is expressed as the “implementability proof obligation” in VDM.)

I have just mentioned the concept of implementability. The idea behind this is that even if
a specification [speci] is not executable itself, it may still be possible to achieve the effect of
[[spec;] with an executable program [[speca]. Since [[speci] does not have to be deterministic,
it can be implemented by selecting particular output values out of the set of possible ones. As
a result, the meaning of [spec;]] may be included in that of [speci], rather than the two being
equal.

Let the domain of a relation on states be given by

dom (L xZ)—»B) >
domR & {oe X|30 € X R(o,0')}

Definition 3.3.1 (Satisfaction and Implementability) Satisfaction of a specification is defined
by
satisfies :Spec X Spec > B “

satisfiestIspeci ], [spec2l) 2
dom Mg, c[[specz]] € dom Mgpcllspecil]
A Mgpecllspeci] € Mispecllspecall

]

T
]
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This will usually be written in infix notation as [speci Jsatisfies[spec,].

If [specilsatisfieslspecz]l and is executable, then we call [speci] an implementation of
[spec2]l and [[spec;]l a specification of ([speci]l. Ispeci] is called implementable if there exists
an implementation of it.

-

It follows that a specification [[spec] is implementable iff it denotes a rgcuréive function. In
particular, every executable program is implementable. Note that [spec; ] and [spec;]] are not
required to be terms in the same language, quite often [spec,] will actually be written in a non-
executable (specification) language, while [spec;] is written in an executable (programming)
language. On the other hand, £, might be an executable language as well (and even equal to £;).
This is often done if [[spec,]] has some other disadvantage, for example inefficiency. [spec;]]
might be written in a high-level but inefficient language and used as a prototype.

The definition of satisfies can be interpreted as demanding that [spec,] is both at least as
defined and at least as determined as [[spec,]. Due to our definition of dom, the second actually
implies that [[spec;]] cannot be more defined than [spec ], so that one might equivalently demand
that the domains of [[speci] and [[spec,] are equal. An alternative interpretation of the second
conjunct in the definition of satisfies is that the transformation from a specification to its imple-
mentation is non-correctness-preserving under both parsings of the word: if a pair (o, ®) € IXX
describes a non-correct input-output behaviour w.r.t. the specification, this behaviour will also be
non-correct w.r.t. the implementation, i.e. non-correctness is preserved. Correctness, on the other
hand, is not in general preserved under this transformation. The first conjunct then restricts the
amount of correctness that can be ‘lost’ by the transformation.

The approach to satisfaction used here is different from that used, for example, in VDM, where
the implication Mg [speci (0, 07) = Mspecllspeca]l(o, 6”) would only be required to hold if
0 € dom Mgpc[[spec;]l, and dom R would be defined as {0 € £ |30’ € Z-R(0, ) A—R(0, L)}
In other words, if a specification is allowed not to terminate for some input state o: Z, then any
output satisfies the specification for input ¢. The approach used here has the advantage that it
makes it possible to describe the specification of partially correct behaviour. While this is not
needed in VDM since there one is not interested in specifying partial correctness and insists on
total correctness over the domain of interest (i.e. when the pre-condition holds), the framework
described here is intended to be more gencral and cater for other specification languages as well.
The version of correctness presented here is sometimes called loose correctness, while the version
of correctness used in VDM is called robust correctness (cf. [Bro85]). Note however that the model
of symbolic execution described later will not depend on this notion of satisfaction, satisfaction
will only be used to describe properties of the model.

Another approach to implementing specifications is the use of a wide-spectrum language
which is not itself executable, but which contains an executable sub-language. One then writes a
specification using the full language and implements it in the executable sub-language. This ap-
proach is often combined with transformational programming, as for example in the CIp project
[B*871.
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3.4 Term rewriting

This section has been included to provide some of the background and notation for the discussion
of operational semantics in Plotkin’s SOS-style (cf. §3.1).

3.4.1 Basic concepts

The standard reference article on this subject is the survey [HO80]. The following is mainly based
on that article and on [Der85].

Definition 3.4.1 Let T be some set of terms, let v(s) denote the set of free variables in the term
te T,andletX = (xy,...,x,). A rewrite rule over 7 is a directed equation I[X] — r[X] where
Lre T andv(r) c v(I)  {x1,...,Xs}. A (term) rewriting system R is a set of such rewrite rules,
and =g is the equality generated by the set of equations R, ignoring their directions. We say that
R is finite if it contains a finite number of rewrite rules.

A rewrite rule /[X] — r[X] can be applied to a term ¢t € T if ¢ contains a subterm s that

matches /, i.e. for some @ € 7" we get s = I[¥/dG]. Here l[ic'/c'i] denotes the result of replacing the
variables X = (x1, ..., Xx,) in the term I by @ = (ay, ... , a,).

Applying the rule to ¢ then means replacing s in ¢ by r[%/d@], which yields some new term 7.
We denote this by t = 7, or, to stress the dependence on R, by t =g 7. Repeated application
of rules from R is denoted by ¢ 57 (transitive-reflexive closure, any number of repetitions) or
t ::> ¢ (transitive closure, at least one repetition).

Definition 3.4.2 A term t is irreducible or in normal form (with respect to R), iff no rule from R
can be applied to t.

R is confluent or uniquely terminating or convergent iff

* * * *
Vt,t2,5€ T -s=t; and s = ¢, implies Ip T-ti=>pand t, = p.

R has the Church-Rosser property iff

* *
V.t e T~tl =Rt2iffase T‘t1:>sandt2:>s.

R is neetherian or (finitely) terminating iff for no t € T there exists an infinite chaint = t; =
= ...

R is a complete or canonical rewrite system iff it is finite, confluent and neetherian.

Lemma 3.4.3 a) If R is neetherian, then every term has a normal form.
b) If R is confluent, then the normal Jform of any term is unique, if it exists.
¢) R is confluent iff it has the Church-Rosser property.

Lemma 3.4.4 (Decidability) a) For general rewrite systems, confluence and termination are un-
decidable.

b) If R is neetherian, then the confluence of R is decidable.
¢) If R is complete, then the equational theory =g is decidable.
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that an important question arising when dealing with a

From these lemmas it can be seen
If it is, then most of the interesting propertics

rewrite system R is to decide whether it is neetherian.
of R are decidable.

—

3.4.2 Termination

ually proven using monotonic well-founded orderings..

T is monotonic if ty < 12 = f...,t,..) <
ch contains the subterm . A monotonic
t,...) > tholds. <is well

Termination of a rewrite system is us

A strict partial ordering < over a set of terms
f(....t,...), where f(...,t,...) denotes any term whi
ordering < is a simplification ordering if for all terms from T, f(...,

founded if there is no infinite descending sequence fy > & > 13 7 .-
Given some monotonic well-founded ordering >, wWe¢ say that a rewrite rule | — risa

reduction, if 1 > r for any substitution of ground terms for its variables.

of terms is neetherian iff there exists a monotonic
1 — r in R are reductions.
over T such that for any rule | — 1 inR and

Lemma 3.4.5 a) A rewrite system RoverasetT
well-founded ordering < of T such that all rules

b) If there exists a simplification ordering <
any substitution of terms for its variables, 1~ r holds, then R is ncetherian.

[HO80] describes a number of possible orderings of terms.

3.5 Relationship between denotational and operational semantics

§3.1 discussed different styles of describing the semantics of a specification language. Now given
two such descriptions of the same language, but in different styles, what is their relationship? How
can one ensure that they do indeed describe the same language, or at least do not contradict each
other? In this context, I am only interested in the relationship between denotational and operational -

semantics, since these are the two styles that I will use for describing symbolic execution. The

following description is based on [Sch83, §10.7].
considered as an interpreter for the language,

The operational semantics of a language can be

consisting of a set of (interpreter) configurations and a binary relation on configurations (called
evaluation or reduction relation). A configuration consists of a state o and a sequence of spec-
ifications. The denotation of such a configuration is the state that results from interpreting the
sequence of specifications starting from o, or the set of such states if the specifications are non-
determined. This interpretation should be mirrored by the reduction rela-
sform configurations into configurations with
until finally a configuration with an empty

deterministic or under-
tion of the operational semantics, which should tran

a simpler (usually shorter) sequence of specifications,

sequence is reached. Such a configuration is called final.
Now we can define a notion of soundness, called faithfulness of an operational semantics, con-

sidered as a set of transitions from configurations to configurations, with respect to a denotational

semantics M:
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Definition 3.5.1 (Faithfulness) a) A transitioncy < c2 is faithful with respectto M, if it implies
Mc1]l = Mleall, or M1l 2 Mic2]l if M returns a set of valuations.

b) An operational semantics - — - is faithful to a denotational semantics M if for all con-
figurations c1 and 2, €y — C2 implies M[[c1] = MIcz], or M1l 2 M{c2] if M returns a

set of valuations.

For the operational semantics to be useful, it is not enough to be just faithful, however, since even
an empty reduction relation is faithful. One therefore needs a suitable notion of completeness. This
should express that the reduction relation does indeed reduce configurations to final configurations.

Similarly, there are a number of other important properties describing the relationship between
denotational and operational semantics, for example full abstraction. However, while faithfulness
is a property of individual transitions, these other properties discuss operational semantics as a
whole. Since this thesis does not give the compiete operational semantics of any language, but
only a few transitions describing some important language constructs, these other properties are

not relevant in this context.
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Chapter 4

Semantics of symbolic execution

4.1.1 The semantic model

“I don't know what you mean by ‘glory,’ " Alice said

Humpty Dumpty smiled contemptuously. “Of course you don't
— till 1 tell you. 1 meant ‘there’s a nice knock-down argument for
youl" ”

“But glory doesn't mean ‘a nice knock-down argument,™ Alice
objected.

“When | use a word,” Humpty Dumpty said, in a rather scornful
tone, “it means just what | choose it to mean — neither more nor
less.”

“The question is,” said Alice, “whether you can make words
mean so many different things.”

“The question is,” said Humpty Dumpty, “which is to be master
— that’s all.”

Lewis Carroll: Through the Looking Glass

4.1 Denotational semantics of symbolic execution

The following description starts off with some possible semantic models that turn out to contain
insufficient information and were therefore rejected, but provided stepping stones on the way to
the construction of the model that will be used.

As a first attempt at a formal description of symbolic execution, one might try to base it on

the observation that in symbolic execution, the input to a specification [spec]] can be considered
as a set S X, of states. As output, it returns the set of states that can be reached from a state
in S via Mgp.c[[spec]l. However, for describing the denotational semantics of symbolic execution
this is not sufficient, since it would lose all the information about the relationship between input

39
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and output states themselves, as opposed to the relationship between the sets of these states.! For
example, given the specification x = 0 v x = “x + 1, symbolic execution would map N to N
and not really provide sufficient information. To get more useful information, one would have to
restrict the set S, in this case {o | o(x) € N}, to a small subset, which would be contrary to the
ideas of symbolic execution and lead towards ‘testing’ of specifications.

Now consider the following improved attempt at a definition of symbolic execution: again, the
input consists of a set S < T of states. Then the output of symbolic execution of a specification
[[spec] has as denotation the function A6 € S - {01 € Z | Mgpecllspecll(o, 01)}, which maps a
state o in S to the set of all states that may result from interpreting [[spec] starting in state 0.

The reason for starting symbolic execution with a set S € Xy, rather than ¥ itself, is that the
model should support restrictions on the original set of parameters. This means that the result of
applying symbolic execution may not be defined for cvery parameter state o Z,, only for those
in the original set. In other words, the output of symbolic execution of a specification denotes
a partial function. The reason for introducing such restrictions is that the output terms resulting
from symbolic execution can get very complicated, partly because of conditionals that have to
be introduced to describe the effect of branching statements. By introducing suitable restrictions
on the input domain, the user can ensure that only one branch can be taken and the conditional
can be eliminated from the output expression. For example, with a specification if x>0 then
[speci] else [spec.] one might at first only want to consider the case x 2 0, and therefore start
from the set §; = {0:ZL | o(x) 2 0}, considering x < 0 separately.

The main problem with this improved description of symbolic execution is that it does not
allow composition of two (or more) symbolic execution steps, input and output do not even have
the same type. One way to overcome this problem is to introduce the initial starting state o as
a parameter to the sets of states as described above. Rather than starting symbolic execution off
with a set of states, one already starts with a map from states to sets of states. In the first step, this
will essentially be the identity map on the input set of states; after one or more symbolic execution
steps it will be the map from the original parameter state to the set of states that can be reached
from the parameter state via the appropriate sequence of operations. Thus after n steps one gets

{o—{on|301,...,0n1"
MspecllspeciI(0, 1) A ... A Mpecllspecal(On-1, o.)} | oe S}

One might therefore consider such a map as a partial non-deterministic state transition function.
A sequence of symbolic execution steps is then described by the sequence of state transition
functions generated in each step.

Such a collection of parameterised sets of states can often be expressed as a term containing
a free (input) variable x, or, more general, a predicate containing the free variables x and y, where
y denotes the oufput variables of [[spec].

The modet of symbolic execution as described would be enough if one only had to deal
with symbolic execution itself. However, it does not support intermediate assume or believe
commands (as described in §6.1.2). assume assumes that a given logical expression is true, and

By . .
1For other purposes it can still be very useful to consider these sets; this is essentially what is done in abstract
interpretation, cf. §2.3.
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The model described above allows for such

thus restricts the set of possible execution sequences.
but not for any restrictions on later

restrictions only that restrict the set of initial input states,

states. Although in most Cases it only makes sense to introduce such later restrictions if at some

stage the negations of these restrictions are dealt with as well, one still needs this possibility to

ensure that result expressions do not get too complicated. ’

believe also assumes that a logical expression is true. The difference to assume is that a
believed logical expression is considered as a proo. obligation to be discharged later, the belief
has to be justified. It thus does not restrict the set of parameter states, but only expresses a condition
that holds already but has not been proven yet.

There are a number of different ways of overcoming this problem of supporting intermediate
assume or believe commands. Instead of modelling each step in a sequence of symbolic execu-
tions by a map from the initial starting state to the set of reachable states, one could use maps from
the starting state of this step to the set of reachable states. The sequence of symbolic executions
would then essentially be described by the sequence of meaning relations of executed specifica-

tions. This does model restrictions on parameter states, but only if they are expressed using two
r only a single one), other restrictions cannot in general be modelled in this

consecutive states (0

way.
For this reason, the model of symbolic execution selected is based on a ‘symbolic execution
f states. The definition of SEStateDen

state’ called SEStateDen which contains sets of sequences 0

is given in Figure 4.1. The name SEStateDenis a shorthand for Symbolic Execution State as used

for Denotational semantics. Similarly, §4.2 will introduce SEStateOp for states in operational
semantics.
In addition to the set of sequences of states, SEStateDen contains a field LEN which stores
the number of symbolic execution steps performed, plus 1 for the initial state (see Figure 4.1). At
the same time, this is the number of actual execution Steps modelled in any sequence of states in_

the field SEQS plus 1, which leads to the first conjunct in the invariant. In this model, assume
“cutting off” as much as necessary from the end of all

fied. This intuition explains the second conjunct on
e in SEStateDen is an initial segment

or believe restrictions are modelled by
sequences of states until the condition is satis
the invariant on SEStateDen, which derands that no sequenc

of another such sequence.
As a convention, 7 will

of £, as before.
Symbolic execution of a specification is modelled by adding another state to all those se-

quences that have not been “cut off”, sce Figure 4.2. Just as interpretation or execution, given a
specification, maps states to states, so symbolic execution, given a speci fication, maps SEStateDens

to SEStateDens.
Doing symbolic executi

be used to denote elements of SEStateDen, while & denotes elements

on in the way described here and storing all possible sequences of

states allowed by a sequence of specifications requires a fairly rich language for expressing the
results of symbolic execution, which might not always be available. For example, the result of
executing a while-loop will often not be expressible in the language available. Therefore, in
addition to such full symbolic execution Figure 4.2 also defines weak symbolic execution, where

the result includes the set of all possible sequences of states. This ensures that the properties one
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A state as used in symbolic execution is given by

SEStateDen :: SEQS : P(seqof X.)
LEN : N

where

inv-SEStateDen(mk-SEStateDen(set, 1)) &
Yo-seq € set-leno-seq <1
AV o-seq1, 0-seqz € set- NV 0-seq. seq of P
o-seq| = O-seqy — 0-seq = 0-5€G = {1

Here —~ denotes concatenation of sequences.
A set S ¥, of states (or, similarly, a predicate on states) can be represented by the

SEStateDen
(s 2 mk-SEStateDen({[0]| 0 € St 1)

The function yield extracts the input/output relationship from the sequences in
SEStateDen.
yield(t) & 20:Zy-{0":Z.[30-seqe SEQS(T)-
hd o-seq = & Alasto-seq =0’
Alen o-seq = LEN(7)}

Figure 4.1: Denotational semantics of symbolic execution — State

gets as a result of weak symbolic execution still hold for the denotation of the full result, they just
do not in general give a complete description.

Since in many cases one is really interested in the relationship between input and output states
and less in the intermediate states, a function called yield for extracting this relationship from
an SEStateDen is also provided (in Figure 4.1). This can be considered as extracting from an
SEStateDen the map from initial states to possible resulting states, the possible data model for
symbolic execution rejected above. It thus is quite similar to the yield operator * introduced
in [dBZ82].

Note that there is a distinction between symbolic execution of the composition of specifi-
cations and the composition of symbolic executions. As Lemma 4.1.7 will show, they give
rise to SEStateDens that describe the same relationship between initial and final states, but the
SEStateDens themselves are different. They lead to SEStateDens of different lengths, since sym-

* bolic exccutionof the composition of specifications is considered as a single step, while a sequence
of symboli¢ executions in general consists of several steps.

It is not immediately obvious that symbolic-ex as defined is a total function. Although a result
is constructed for any input values, this result might not be of type SEStateDen. The following

Jemma shows that this case does not arise.

Lemma 4.1.1 symbolic-ex is total.

w

i
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(Full) symbolic execution is given by the functions

symbolic-ex : Spec — SEStateDen — SEStateDen

symbolic-ex[speclt 2
mk-SEStateDen(

A Mpecllspec](lastfront o-seq, last 0-seq)
v len o-seq < LEN(T) A 0-seq € SEQS(7)},
LEN(T)+1)

and

symbolic-ex-s : seq of Spec — SEStateDen — SEStateDen
symbolic-ex-s[[spec-seqllt &

if spec-seq =]

then 7

else symbolic-ex-s[[tispec-seqll(symbolic-ex[[hd spec-seq]| T)

Weak symbolic execution is a function

w-symbolic-ex ([[spec]: Spec, 71: SEStateDen) 7,: SEStateDen
post SEQS(%) o SEQS(symbolic-ex[[spec]t)
A LEN(%) = LEN(symbolic-ex[[specl 1)

with a similar function for sequences of specifications.

{0-seq | len 0-seq = LEN(7) + 1 A front 0-seq € SEQS(T)

—

Figure 4.2: Denotational semantics of symbolic execution — Functions

Proof We have to show that for any ﬂ;vbec]}: Spec, T: SEStateDen
inv-SEStateDen(symbolic-ex{[spec] T)
The first condition is obviously true. Now let
o-seqy, G-seq, € SEQS(symbolic-ex{ispec]t)
and o-seq: seq of T, 6-seq # [ ] be such that
O-seqy = O-seqa — O-seq
The definition of symbolic-ex then implies that o-seqz € SEQS(7).

Case 1: leno-seqy = LEN(7) + 1
Then

o-seqy — front o-seq = front &-seq; € SEQS(T)

43
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and inv-SEStateDen(7) implies that front o-seq = [1, i.e. len 0-seq = 1. But then len o-seq) =
LEN(7), therefore -seq; cannot be in
SEQS(symbolic-ex[[spec]]T) — contradiction.

Case 2: len o-seq; < LEN(T)

In this case o-seq =[] follows immediately from inv-SEStateDen(7).

4.1.2 Some properties of symbolic execution

After an example, this subsection contains some lemmata describing properties of this model of

symbolic execution. Most of these properties are those that one would ‘obviously’ expect to hold,
they thus serve to validate our model.

Example 4.1.2 Let Name = {x,y}. We want to symbolically execute the operation

OP,

extwrx : Z
wry : N

prex=0

post Y2 <X Ax="% +1
Then

Mspe[OP11(0, 01) < if 0(x) 2 0 then 61(y)?2 < 6(x) A 01(%) = o(x) + 1 else true

Now the user assumes that the pre-condition of OP; is true. This means that OP; is to be sym-
bolically executed in the SEStateDen 7; which represents the predicate x > 0:

(5

mk-SEStateDen({[0] | Mpreqllx 2 0] 0}, 1)
mk-SEStateDen({[c] | o(x) 2 0}, 1)

i

Then symbolic execution of the specification OP; starting in the SEStateDen T; results in the
SEStateDen

symbolic-ex[OP 111y
= mk-SEStateDen({o-seq | len o-seq = LEN(T;) + 1 A front o-seq € SEQS(11)
A Mspe [OP](last front o-seq, last 0-seq)
- v len 0-seq < LEN(T) A 0-seq € SEQS(11)}, LEN(1)) + 1)
=_._mk-SEStateDen({ o-seq | len o-seq = 2 A o-seq[1](x) > 0
A Mspec[OP11(0-seq(1], 0-seq(2])},2)
= mk-SEStateDen({0-seq | len 0-seq = 2 A o-seq(1](x) = 0
A 0-5eq[2](y)* < 0-seq[1)(x)
A O-seq[2](x) = o-seq[11(x) + 1},2)
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Strictly speaking, Op; is the name of the operation (or specification) rather than the operation
itself. For the time being, I shall use names of specifications to denote both the name itself and the
specification referred to by it, until in §4.2.3 a mapping from specification names to specifications
is introduced.

The following properties of the model of symbolic execution use the function yield. The
reason for this is that these properties relate different ways of getting the same mapping from initial:
states to sets of final result states. Although they arrive at the same such mapping, the execution
sequence used to get there may be different, in particular they may have different lengths.

Lemma 4.1.3 Let [[spec]: Spec, let Ty, To: SEStateDen be such that
symbolic-ex{[spec]ti = 7. Thenforall o,01: 2

01 € yield())(0) = interpretspecloy € yield(1)(0)

In particular if T represents a set S of states, i.e. Ty = mk-SEStateDen({[c]| o € S},1), then
foralloce S
{o,interpret[specllol € SEQS(12)

This lemma states that the result of interpreting a specification in a state ¢ can also be achieved
by symbolically executing the specification in a SEStateDen T which represents a set of states
including o, and then selecting a sequence starting with ¢ in the result.

Lemma 4.1.4 Let 7: SEStateDen. Then
yield(symbolic-ex{{ skip]|T) = yield(T)
Lemma 4.1.5 If [[speci]satisfiesspecs]l, then for all T: SEStateDen
SEQS(symbolic-ex[[spec1]1T) < SEQS(symbolic-ex|[spec2]7T)
Lemma 4.1.6 Given some [[spec]l: Spec and t: SEStateDen. Then
yield(symbolic-ex{specl|T)
= {0+ {0130 0; & yield(1)(0) A Mspellspecl(oz, 01)}}
Proof

yield(symbolic-ex{[spec]l )

i

Ao - {a | Jo-seq € SEQS(symbolic-ex[specllT) -
hd 0-seq = & Alast 0-seq = 01

Alen G-seq = LEN(symbolic-ex[[specl 7)}

Ac-{ay | 3o-seq’ - 03 - len o-seq” = LEN(7T) A O-seq’ € SEQS(7)

A Mg c[[specli(last o-seq’, 03) Ahd O-seq’ = G A 02 = 1}

[

Ao - {0 | 3o-seq’ - len 0-seq’ = LEN(T) A 0-seq’ € SEQS(T) Ahd 0-seq’ =

A Mgpeclspecli(last o-seq’, 61)}

Ao - {0y | 302 - 0y € yield(T)(0) A Mgy [lspecll(0, 01)}
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4.1.3 Composition of specifications
Let ; denote sequential composition of specifications, and let o denote function composition. Then

Lemma 4.1.7 (Composition) For all specifications [spec], [spec2]: Spec,

yield o symbolic-ex{[specy; specay]l = yield o symbolic-ex-s{[[speci, speca]]]
Proof See Appendix A.1. O

Note that we do not have
symbolic-ex([specy; specs]l = symbolic-ex-sil[specy, specall}

since [[specy; spec,] is regarded as a single specification, while [[specy, specz 1]l is a sequence of
two specifications. Therefore symbolic execution of the two leads to SEStateDens of different

lengths.

Example 4.1.8 Given the operation specification

OP;
extwrx : Z
dy : N

pre —100 < x<+100
post3z:Z-y*z+x="X A0<x<y

we want to symbolically execute OP; starting in the SEStateDen 7, resulting from symbolically
executing OP1, as given in Example 4.1.2. From the specification it follows that

Mipec[OP2](0, 01) < if —100 < o(x) <+100
then 3z: Z - 01(y) * z+ 01(x) = o(x)

A0 <L 01(x) < 01(¥) A G1(y) = 0(Y)
else true

Then symbolic execution of OP; starting in 7, results in the 73: SEStateDen with LEN(13) = 3 and

SEQS(symbolic-ex[[OP;] 1)
{o-seq | len o-seq = LEN(13) + 1 A front -seq € SEQS(T>)

A Mspe [OP, ](last front o-seq, last o-seq)
Vv len 0-seq < LEN(%) A 0-seq € SEQS(1)}

{o-seq |len o-seq =3
A 0-seq[1](x) 2 0 A o-seq[2](y)* < T-seq[1](x)
A O-seq[2](x) = 0'-seq['1](x) +1
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A Mspec[OP2](0-seq(2], 0-seq(3])}
= {0o-seq|leno-seq =3
A 0-seq[11(x) = 0 A G-seq[2)(y)* < o-seq[1](x)
A o-seq[2)(x) = o-seq1](x) + 1
Aif —100 £ o-seq[2](x) < +100 -
then 3z: Z - 0-seq(31(y) * z + 0=seq[3](x) = o-seq[2](x)
A0 < o-seq{3)(x) < o-seq(31(y)
A 0-5eq[3)(y) = 0-seq[2](y)
else true}

Note that the restriction on the set of starting states for the resulting set of state sequences
(i.e. o-seq[1](x) = 0) was explicitly introduced by the user, using the assume command, be-
fore symbolically executing OP;. This is the reason why, in spite of the second pre-condition
—~100 < x <€ +100, the result still considers all o-seq s.t. 6-seq[1](x) = 0. Instead, the result itself
contains a conditional. It is only for practical reasons that the user will often assume that the
pre-condition is true, so as to keep the resulting expression reasonably simple.

4.1.4 Non-determinism and under-determinedness

In symbolic execution, the effects of under-determinedness and non-determinism are captured by
the state rather than by making symbolic execution itself non-deterministic — the reason being
that one wants to check that all outputs allowed by the specification or program are correct, and
not just one of them.

As an example, consider the command (from Dijkstra’s language of guarded commands
[Dij76])

IF & if by > specy O by — specy £i
The meaning of /F is given by

MpeclIFI(01, 02) < Mpredlbi01 A Mgpecllspecili(or, 02)
VM preall 21101 A Mgpecllspeczli(o1, 02)
Since we are interested in the non-deterministic case, we let 7;: SEStateDen represent
{0:Z4 | Mpredllb1lo A Mpredlibzllo}
ie.
71 = mk-SEStateDen({[0] | Mpredlb116 A Mpredlb2lo}, 1)
Then LEN(symbolic-ex{[IF]i71) = 2 and

SEQS(symbolic-ex[IFTT1)
= {o-seq|len o-seq =2 A front 6-seq € SEQS(71)
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A MpelIF(0-seq[1], 0-seql21)}
{0-seq | len G-seq = 2 A Mpyeallb10-seq[1] A Mpredllb2]l0-seq(1]
A (Mpredllb1]lo-seq[1] A Mspeclispeci(0-seq(1], o-seq[2))
V Mpredlb210-seq[1] A Mspeclspecall(o-seq{1], o-seql2]))}
{0-seq | len o-seq = 2 A Mp,allb1ll0-seq[1] A Mp,.dllb2ll0-seq[1]
A (Mspecllspecili(o-seq(1], o-seq[2])
v Mgpellspecall(o-seq(1], o-5eq(21))}

and the non-determinism has been transferred inside the SEStateDen 7.

4.2 Operational semantics of specifications as used for symbolic ex-
ecution

This section describes a model of symbolic execution based on the operational semantics approach.
The style of operational semantics used is based on that of Plotkin’s “Structured Operational
Semantics” [Plo81], but of course some of the transitions themselves are rather different since
they describe symbolic rather than actual execution. However, if there is no danger of confusion,
I shall in future not explicitly mention that I am dealing with the particular version of operational
semantics used for symbolic execution, but just talk about operational semantics.

The following discussion starts off with the underlying data structure used, and then shows a
number of transitions and rules for various language constructs.

There is an important difference between the descriptions of the denotational and operational
semantics of symbolic execution. While it is possible to explicitly define the denotational seman-
tics of symbolic execution itself by expressing them in terms of the denotational semantics of the
language used, this is not possible for the operational semantics. Instead, one here has to provide
a different version of the operational semantics of the language, specifically for symbolic execu-
tion. This paper does not try to provide the complete operational semantics for any language, but
shows the rules for a number of important language constructs instead.

4.2.1 The data structure

States as used on the operational level will be called SEStateOps — Symbolic Execution States as
used for Operational semantics. In SEStateOps, the information derived by symbolic execution

- should get associated with those identifiers whose values are described by it. For this reason,
SEStateOps use maps from Name to the relevant information. The easiest way to model this
relevant information seems to be to model it as predicates. These predicates must be predicates
on sequences of states rather than single states, since they should model the relationship between
ifferent states. Such predicates are introduced as PredS below. These are the predicates the user
should actually get to see as description values of variables at any stage in the symbolic execution.
A PredS then is any expression whose semantics can be given as
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M preas: PredS — StateSeq — B
where StateSeq is defined as
StateSeq = seq of £ | StateSeq

StateSeq is defined recursively rather than just as a sequence of states in order 1o be able to
handle blocks and loops, as described below. This decision does not seriousty.affect the definitionf
of PredsS. ’

The language of PredsS has to include constant symbols true and false, and operator symbols
for A, =, & (all with their standard interpretation), and a conditional provided-then (as defined
in §4.2.4).

The only condition on the intemnal structure of PredsS is that it must be possible to define a
function

mentions: PredS — set of Name

which collects the identifiers mentioned in a given PredS into a set. No other conditions are
needed since symbolic execution itself makes almost no use of the information contained in the
PredS, only simplification needs to know about the syntax and semantics of PredS. (In particular,
it needs to know when two PredS are equivalent.) The definitions of the syntax and semantics
of PredS are therefore given in a theory which is used to instantiate symbolic execution for a
particular specification language (and thus for a particular language of PredS), but are not used in
the model of symbolic execution itself. These simplification theories are described in §5.3.2.
Since allowing sets of Preds rather than only individual Preds as description values makes it
casier to combine different PredS and, when needed (for example for simplification), split the re-
sult again to get its components, SEStateOps are modelled using maps from Name to set of Preds.
An additional complication arises because each symbolic execution step gives rise to a new
predicate on sequences of states, and obviously each such predicate may provide valuable infor-
mation that should be associated with the appropriate identifier and the appropriate execution step.
Therefore, SEStateOps will be defined as sequences of maps from identifiers to sets of predicates
on sequences of states. An SEStateOp thus stores a history of the results of symbolic execution.
In this history a loop should be considered as a single step, even though it may really consist of
any number of steps (including 0). Thercfore, the result of the loop is modelled as an SEStateOp
itself, which is then considered as one step in the original SEStateOp. Similarly, blocks should
be considered as a single step and are therefore also modelled as an SEStateOp themselves. This
leads to the recursive definition of SEStateOp given in Figure 4.3. One might thus consider an
SEStateOp as a tree, where the leaves of the tree are maps and the inner nodes are SEStateOps.
Pre-order traversal of this tree describes the execution sequence modelled by the (root) SEStateOp.
In addition to the sequence described above, SEStateOp contains a field INDEX which stores
the index or position of this SEStateOp in the recursive definition — this will be needed to get
the right description values in the SEStareOp. Since these express properties of sequences of
states, they need to know which sequence of states they should refer to. This issue should become
clearer in the discussion of simplification in §4.2.4 and with the example transition for VDM-
operations given in §4.2.6, where INDEX will actually be needed. The invariant on SEStateOp
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Define
Index = seq of N

A state as used for describing the operational semantics of a language for symbolic
execution is defined recursively as

SE-map = map Name to set of PredS

SE-elem = SE-map | SEStateOp

SEStateOp ::  SEQ : seqof SE-elem
INDEX : Index

where

inv-SEStateOp(mk-SEStateOp(Seq, ix)) &

Seq#[]
A hdSeq: SE-map
AVk <lenSeq -
Seqlk]: SEStateOp = INDEX(Seqlk}) = cons(k, ix)

The denotation of an SEStateOp is given by
M sEState0p: SEStateOp — SEStateDen

MSEStateOp([S]] é
mk-SEStateDen({[0] | satisfies-all-restrictions([5],S,1)},1)

prelenSEQ(S) =1

M sesuieopllmk-SEStateOp(Seq r~ e, ind)]] &
let St = mk-SEStateOp(Seq r~ e, ind) in
let So = mk-SEStateOp(Seq, ind) in
mk-SEStateDen(
{o-seq:seqof I |
satisfies-all-restrictions(c-seq, Sy, len Seq + 1)
A (front o-seq € SEQS(M sgstare0,[S21)
nlen o-seq = lenSeq+ 1
v 0-seq € SEQS(M sgsiare0pS21)
Alen o-seq = len Seq
A—do: X, - satisfies-all-restrictions(
- 0-seqrv 0,51,lenSeq+ 1)
"V o-seq € SEQS(M sgsiare0pllS21)
"~ Aleno-seq <lenSeq)},
lenSeq+1

Figure 4.3: Operational semantics of symbolic execution — State
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ensures that every SEQ(S) has a first element which defines the allowed parameter states. An
SEStateOp itself would not be allowed as first element because it should only arise as a result
of symbolically executing a specification (usually a loop or block). Additionally, the invariant
ensures that SEStateOp describes the intuition behind INDEX as described above — the INDEX
of any SEStateOp which is the k-th element of SEQ of the SEStateOp S is the INDEX ixof wn

k added at the front, or cons(k, ix). =
The valuation function M sgsure0p Maps an SES tateOp to an SEStateDen, where the resultmg

SEStateDen contains those sequences of states that satisfies all the predicates in the SEStateOp.
This is expressed using the following notation and auxiliary functions:

~ denotes adding of an element to the end of a sequence: seq v e A seq ~ [e].

satisfies-restriction takes a sequence of states 0-seq and a PredsS ps and checks whether 0-seq
satisfies ps. Any restriction on a state o-seq(k] where len 0-seq < k is considered as satisfied.
This function will have to be defined formally by recursion over the syntax of PredS. 6 retums a
name for the value of an identifier nm at some stage k in an actual execution sequence and is used
to refer to that value in a PredsS (cf. §4.2.4).

satisfies-restriction : seq of L X PredS X Index — B

satisfies-restriction{0-seq, ps, ix) A
1. Replace any &(cons(k, ix), nm) in ps by o-seqlk}(nm) (k < len O-seq)
2. Tn the result, replace any atomic formula still containing & by true
and evaluate

The following function checks that g-seq satisfies all the restrictions imposed by S at level i:

satisfies-restrictions : seq of X, x SEStateOp XN; — B

satisfies-restrictions(o-seq,S,i) £
if SEQ(S)[i]: SE-map

then A.edom st Apse SEQS)iiim)
satisfies-restriction(G-seq, ps, INDEX(S))

else 3o-seq - satisfies-all-restrictions(
o-seq’, SEQ(S)il, len SEQ(SEQ(S)[i1))
Alen o-seq’ = len SEQ(SEQ(S)[i])
A o-segli — 1] = hd 6-seq’ A o-seqli] = last 0-seq’

pre i < len SEQ(S)
The function satisfies-all-restrictions is defined below. As will be seen, the two functions arc

mutually recursive.
The function is-legal-sequence arises from the conditions on Mgpec and is a (very weak) check

that ¢-seq can actually arise from a sequence of executions.

is-legal-sequence(o-seq) 2
Vi < len o-seq - 0-seqli] = L. = o-seqli+1]=
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Finally, satisfies-all-restrictions checks that all restrictions up to level j imposed by S are satisfied
and the sequence ‘is legal’:

satisfies-all-restrictions : seq of £ X SEStateOp xN; — B

satisfies-all-restrictions(o-seq,S,j) &
L_\ satisfies-restrictions(o-seq, S, i)
A is-legal-sequence(o-seq)

pre j <len SEQ(S)

We now discuss some of the properties of M sgsiae0p. The first one follows immediately from
the definitions:

Lemma 4.2.1 For all S: SEStateOp
LEN(M sgswae0p[ST) = len SEQ(S)

Theorem 4.2.2 The valuation function M sgsaseop is total.

Proof One needs to show that, for any S: SEStateOp, M sgsweopllST: SEStateDen exists. To do so, one
needs to show that Mesuwo,l[S] satisfies the invariant inv-SEStateDen. This is done in Ap-
pendix A.2. O

In Figure 4.1 we described how an SEStateDen can represent a predicate on states (expressed
there as a set of states). Similarly, one can represent such predicates by SEStateOps. Given
@: Pred, let @ be the PredS

Mpreadl@l{n — &([1], n) | n: Name}

and let
S(p) 2 mk-SEStateOp([{n— {®} | n: Name}1,[])

Then M sgsie0p[S(9)] is the SEStateDen that represents ¢, and we say that S(¢) is the SEStateOp
that represents @. Of course, ® does not have to be associated with each Name n, one could
altematively only associate it with those # that are mentioned in @, or even only with one arbitrary
n.

The valuation function of SEStateOp, like the others defined before, could also be considered
as a retrieve function [Jon86, pages 204ff]. In this case, it has an adequacy proof obligation asso-
ciated with it.2 If Val is finite, then it depends on the expressiveness of PredS whether M sgsiare0p

-satisfies this obligation. For infinite Val, however, there are uncountably many sets of state se-
quences and therefore uncountably many SEStateDen. On the other hand, there are only countably
many SEStat?Op and therefore SEStateOp cannot be adequate w.r.t. Msgsure0p.

So far we have always allowed the PredS-conditions inside an SEStateOp to refer to any
element of a state sequence, including future ones. This will cause some problems when adding

2A representation Rep is adequate with respect to a retrieve function retr: Rep — Abs
iff Vae Abs-3re€ Rep-retr(ry=a
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another element to the sequence SEStateOp, so for example in the transition for VDM-operations in
§4.2.6. Earlier conditions on the current state 0 may destroy the faithfulness (s&e Definition 3.5.1)
of that transition. We therefore define the following property which ensures-that this problem does
not arise. The definition uses the auxiliary function ’ :

highest-index: PredS — Index
which finds the highest index ix s.t. for some n: Name and some ix-seq: seq of N with hd ix-seq =

ix, &(ix-seq, n) occurs in a PredS. This function has to be defined recursively over the syntax of
PredS.

Definition 4.2.3 mk-SEStateOp(Seq, ind) is well-behaved iff

Vi <lenSeq - Seqli]: SE-map
= Anedom Seqiil Apse Seqliln) Highest-index(ps) < i

The main motivation for the definition of well-behaviour is captured by the following lemma:

Lemma 4.2.4 Let len g-seq > i. If S: SEStateOp is well-behaved, then for all 0: X

satisfies-restrictions(o-seq, S,i) < satisfies-restrictions(o-seq ~ ©,S, i)

Proof “=” Follows from the well-behaviour of S

«e= Follows directly from the definition of safisfies-restrictions. O

We now introduce the function collect-preds, which collects into a set all the PredS in a given
SEStateOp, up 1o a certain element (given as argument ix) in the execution sequence of S. If ix is.
empty, then all Preds in the SEStateOp arc collected:

collect-preds : SEStateOp x Index —» set of PredS

collect-preds(mk-SEStateOp(S, ind), ix) 2
let ix’ = if ix =[] then [len SEQ(S)] else ix in
last o (if SEQ(S)[il: SE-map
then Une dom seo(ia SEQS)EN(n)
else if i = lastix’
then collect-preds(SEQ(S)[i], frontix’)
eise collect-preds(SEQ(S)(i), (1)

preifix#{]
then lastix < len SEQ(S)
A if SEQ(S)[lastix]: SEStateOp
then pre-collect-preds(SEQ(S)[lastix], front ix)
else frontix =[]
else true
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4.2.2 A syntactic view of symbolic execution

It is not immediately clear from the above how SEStateOps relate to the conventional concept of
symbolic execution, where identifiers take symbolic values. Consider an identifier int x. Possible
kinds of values of x include

actual values (ground terms): these are the ‘usual’ values as used in actual execution. The
identifier x has value ¢ for some ¢ € Val at stage i of the SEStateDen 7 iff

Vo-seq € SEQS(%) - o-seqlil(x) =¢

Accordingly, this is represented by the PredS &([i],x) = c. In the appropriate S: SEStateOp
we then get that the PredS 6([i], x) = c is in S[i](x).

symbolic values (terms containing symbols denoting identifiers): for example x=2*y—1isa
possible symbolic value of the identifier x. Symbolic values denote a whole range of input
values but possibly restricted to those of a particular form (odd numbers for x in the above
example). They are distinguished by the fact that they express the value of an identifier
(x in the above example) as an explicit function of the values of other identifiers (y in the
example).

The identifier x has value f(y) at stage i of the SEStateDen 7 iff

Vo-seq € SEQS(7) - o-seqlil(x) = f(o-seqlil(y))

These two kinds of values in symbolic execution are the ones used in most symbolic execution
systems. However, they are too restricted for dealing with specifications, since they cannot deal
with values that are defined implicitly, or underdefined. Therefore we introduce

description values: a variable, and in particular the output variable, may have a predicate as a
value, which describes the value implicitly, rather than a term describing it explicitly. Such
a predicate is called a description value, it may describe a set of states as associated with
an identifier in a SEStateDen.

These description values are general predicates of type PredS, while both actual values and sym-
bolic values can be considered as special cases of description values and therefore of Preds.
The most general results would be achieved by letting S: SEStateOp describe the results of
(actual) execution starting with the set £ of all states. For practical reasons, however, one will
usually have to cut down the complexity of the output term by (interactively) restricting the ad-
" missible universes of the variables used, in extreme cases even restricting it to just one element,
i.e. to mix symbolic and actual execution. In S, such a restriction just has the effect of adding
another constraint ps: PredS at the last element of S. Although in theory it does not matter for
which n: Name ps is added to S[i](n), in practice one will probably want to add it to all those n
which are mentioned in the constraint ps.
In some cases, it might be more useful to show only part of the information gained from
symbolic execution, for example to ignore a more general description such as an invariant and
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only show those parts of the information about the output that arise from the execution itself. In

this case, the information that is not shown should be hidden behind “...”, so that the user can

4 always get to it again and “‘unhide” it. Eliminating the information rather than just hiding it would
lead to weak symbolic execution. §6.2.5 describes hiding of information in more detail.

-

4.2,.3 Transitions and rules . -

In the following I am going to define the kind of transitions and rules used for describing the oper-
ational semantics of language constructs in general, and then give the appropriate transitions and
e rules for various constructs. In many cases (e.g. the rule for if-then-else), the transitions and
= rules of the operational semantics of various language constructs are defined by translating them
into an equivalent construct in the language used for describing the results, and then simplifying
the result whenever possible. This simplification will hopefully help to eliminate the construct
~ from the description.
From the point of view of their purpose, one can therefore distinguish three different kinds of
transitions:

¢ Transitions describiﬁg (state-changing) specifications, like the one in §4.2.6 describing
VDM-operations. Since such operations actually lead to a new state, they are described by

- transitions that extend a S: SEStateOp by adding another element to the sequence SEQ(S).
- e Transitions that eliminate combinators for specifications by translating them into equivalent
- constructs used inside PredsS expressions. As an example, consider the rule forif-then-else
. givenin §4.2.7.
- o Simplification transitions derived from the theory for PredS, as discussed in §4.2.4. The
transition S1 — S is allowed if S5 can be derived from S; by simplification of PredS only.
e |
i We now define the various components that are needed to express transitions. SpecName is “
the type of specification names, and SpecMap associates specification names with specifications:
- |
- SpecMap = map SpecName to Spec
- Configurations consist of a sequence of SpecNames (which may be empty) and an SEStateOp:
- Conf :: SNSEQ : seq of SpecName
. STATE : SEStateOp
- A configuration mk-Conf (sn-seq, S) will be written as (sn-seq, S).

The configuration (sn-seq, S): Conf describes the fact that the sequence of specifications given
by sn-seq is to be applied to S. Given some sm: SpecMap, the denotation of a configuration is
- therefore defined as below, using the auxiliary function evalseq which, given a sequence a-seq
and a function f on its elements, applies f to all the elements of a-seq:
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evalseq : (A — B)xseqof A — seqof B

evalseq(f,a-seq) 2 ifa-seq=1[]
then [ ]
else cons(f(hd a-seq), evalseq(f, tl a-seq))

Mcons : Conf — SEStateDen
Meonfll(sn-seq,S)]] 2  symbolic-ex-slevalseq(sn-seq, sm)(M sesiare0p1ST)

Transitions are defined as
Trans =Yg EXE

where t denotes disjoint union, and E ranges over Conf and the different syntactic categories of
the specification language such as Expr. A transition mk-Trans(e;, e3) will be written as e; < e;.
(Op1,81) — (Opa2,S2) denotes the fact that one interpretation step transforms (Op;,S;) into
(Op2, S2), but — will also be used to denote its transitive-reflexive closure.

Rules take the form

Rule :: hyps : setof (Trans | PredS)
conc : Trans
This fits with the definition of rules (or rule statements) in FRIPSE, (cf. Appendix C), since both
Trans and PredsS are special forms of Assertions.
An important general rule that shows how symbolic execution of a sequence of specifications
can be split up into symbolic execution of its elements is the following:
Rule 4.2.5

([sn].5) = ([1.5)

(cons(sn, sn-seq),S) — (sn-seq,S’)

Lemma 4.2.6 Rule 4.2.5 preserves faithfulness: if the hypothesis transition is faithful, then so is
the conclusion.

Proof Let sm: SpecMap be given. Assume that
(Lsn1,8) — ([1.89
is faithful. This implies that
symbo(ic-ex[[sm(sn)]](M $EState0pl[ST) = M sEState0pS]]

et

Then -

M onell{cons(sn, sn-seq), S) 1l

symbolic-ex-sllevalseq(cons(sn, sn-seq), sm) M sgsiase0pST)

symbolic-ex-sllevalseq(sn-seq, sm)]|(symbolic-ex[[sm{sn) (M sesiae0pST))
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symbolic-ex-sl[evalseq(sn-seq, sm)l(M sgsueeopllSTH

M ons[{sn-seq,S")1i -

]

as required. O

4.2.4 Simplification ' o

Now assume we are given a fixed specification language £. To reason about PredsS, for exampl=
to decide whether a PredS ps; can be simplified to ps;, one needs a suitable theory of PredsS.
This theory, which will be called Tm), needs to be based on the theory used to reason about
terms in £, but additionally an indexing mechanism is needed to differentiate between the values
of program variables (identifiers or names) at different stages in an execution sequence. To d¢
so, sequences (0;); of states are introduced, where 0;:Z;. Since the definition of SEStateOp is
recursive, simple sequences are not enough — we actually need iterated sequences where o; might
be a sequence of states itself. This is modelled by introducing a function &, which returns the
name of the value of the identifier n at a given stage in the execution, with the signature

&: Index X Name — Val-ref

For simplicity, we shall in the following identify the element i: N; with the index [i].
Now a PredsS is a predicate that contains names of values of identifiers at some stage, instead of
the identifiers themselves. See §5.3.2 for a more detailed explanation of PredS. The resulting
theory of PredsS is the theory used for simplification: ps;: PredS inside some SEStateOp can be
simplified to psy: PredS if they are equivalent in T'l;(-i',). Weak simplification, as used in weak
symbolic execution, requires that ps; implies ps2 in T;(Z).

The language of Tﬁ(?:) has to include the provided-then construct on PredS, which is used for
expressing predicates with pre-conditions. The following should hold

(provided true then @) & @
and
(provided false then ¢} <> true

The reason for not expressing “provided ¢ then Y as “if @ then y else true” is that one may want
to treat unsatisfied pre-conditions differently and for example provide a waming message. The
denotational semantics of both expressions arc the same.

4.2.5 Block structures and local variables

We start off the description of operational semantics of language constructs with some rules de-
scribing block structures. The approach taken, for example, by Plotkin [Plo81] for operational
semantics of actual execution of blocks and local variable declarations is not adequate here, since
it discards information about earlier states, only the current values of variables being stored. In
symbolic execution, this is not sufficient since the predicates describing a current value of a vari-
able in general refer to earlier values, therefore the whole history needs to be preserved.
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Therefore, as mentioned before, blocks will be modelled by SEStateOps that are elements of
the sequence SEQ of the original SEStateOp. In order to be able to describe how this is done, the
following auxiliary functions will be needed:

current-names : SEStateOp — set of Name

current-names(S) 2 iflastSEQ(S): SE-map
then dom lastSEQ(S)
else dom hd SEQ(last SEQ(S))

and

add-to-SEStateOp : SEStateOp X SE-elem — SEStateOp
add-to-SEStateOp(S,e) £ mk-SEStateOp(SEQ(S) ~ e, INDEX(S))

The function start-block starts a new block by creating a new SEStateOp which is then added as
a new element to the sequence SEQ of the current one. SEQ of the new SEStateOp only consists
of one element which describes that “nothing changes” — all identifiers keep the same value that
they had before. -

start-block : SEStateOp — SEStateOp

start-block(S) &
let " = mk-SEStateOp([{n » {G((1,1en SEQ(S) + 1] ~ INDEX(S), n) =
5([len SEQ(S)] ~ INDEX(S), n)}
| n e current-names(S)}],
cons(len SEQ(S) + l,INDEX(S))) in
add-t0-SEStateOp(S, S')

finish-block : SEStateOp — SEStateOp

finish-block(S) &
let m = {n— {6([len SEQ(S)] ~ INDEX(S), n) = 6(INDEX(S), n)}
| n e domhd(SEQ(S))} in
add-to-SEStateOp(S, m)

The rule for describing the operational semantics of a block is then given by

Rule 4.2.7

ey

(sn-seq, \astSEQ(start-block(S))) — ([1,5)
"~(begin sn-seq end,S) — ([], add-to-SEStateOp(S, finish-block(S")))

where begin sn-seq end is used as the name of the appropriate sequence of specifications. A
similar convention will be used for other constructs below.

The functions start-block and finish-block are not just auxiliary functions for expressing these

rules, but will also be used in the specification of the UI of SYMBEX, in order to be able to display
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the newly-started SEStateOp, which represents the block (or, similarly, a loop), as an element of
SEQ of the old one. As long as discharging the hypotheses in a rule such as Rule 4.2.7 above
can be done automatically, one does not need such a special mechanism, but if user interaction
is required then one needs to display some of the results before the hypothesis has been fully
discharged. In this case, the functions start-block and finish-block should b&used to “tell the
system” that it is dealing with a block which should be displayed accordingly (cf. page 100).

Like provided-then, these functions therefore have to be part of the language of PredS (cf.
pages 78 and 97). See §7.3 for an example of the Ul of a block started by a while-loop.

Declarations of local variables are handled by mapping them to the empty set of restrictions
and keeping all other variables equal:

Rule 4.2.8

F {[var x: Typel, mk-SEStateOp(Seq, ind))
— ([ 1, mk-SEStateOp(
Seqgn{n—ifn=x
then { }
else { &(cons(len Seq + 1, ind), n) = 6(cons(len Seq, ind), n)} }
ind))

4.2.6 Operational semantics of VDM-operations

Given a VDM-specification of an operation

Op (aaT)r:T,
extrder : Tj

wrew : Ty
pre @(a, er,ew)

post y(a, ew,r, er,ew)

This specification is actually the concrete representation of an object of type (from BSI-Proto-
standard for VDM [And88, BSI88], but without exception handling)
ImplOpDef :: dom : seq of NameiypePair
rng . [NameTypePair]
exts : seq of ExtVarinf
pre : Expr
post : Expr

ExtVarinf :: mode : (READ, READWRITE)
rest : NameTypePair

namely the element
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mk-ImplOpDef ([mk-NameTypePair(a, T1)},
mk-NameTypePair(r, T2),
[mk-ExtVarInf (READ, mk-NameTypePair(er, T3)),
mk-ExtVarInf(READWRITE, mk-NameTypePair(ew, T4))],

,

¥)
The auxiliary functions used in the following are defined in Appendix B.3. The operational se-
mantics of an operation can be described as in Figure 4.4 (ignoring the modularisation provided
in the BSI-Protostandard).

If the language of the theory TE(Z) of PredS was not rich enough to express these predicates,
one would have to be content with weak symbolic execution and use predicates which are implied
by the those used in the rule in Figure 4.4. However, this language should be derived from LPF
in the way described in §4.2.4, in which case it is expressive enough.

Example 4.2.9 Given the specification OP; from Example 4.1.2. As before, we assume that
the pre-condition holds. Since x and y are the only identifier used, we therefore start with the
SEStateOp

S = mk-SEStateOp([{x — {6([11,%) = 0},y — {6((11,%) 20}}L[])

The appropriate instantiation of the rule giving the operational semantics of VDM-operations
is then given by (after some simplification)
x — {6(21,y? < 6([1],%)
let m = A 6(21,x) = 6([1],x) + 1} in
y — {&(2],y) £6(1],x)}
F ([OP4],8) — ([ ], mk-SEStateOp(SEQ(S) r~ m,[])

Theorem 4.2.10 The transition scheme in Figure 4.4 giving the operational semantics of VDM-
operations is faithful, provided that S is well-behaved.

Proof See Appendix A3 0

4.2.7 Operational semantics of if-then-else

Unfortunately, the rule describing the operational semantics of the if-then-else combinator
as used for symbolic execution turns out to be far more complicated than those used for actual
. execution as given by Plotkin [Plo81]. This is due to the fact that, as mentioned before, in sym-
bolic execution one has to store the whole history of results, not just the current ones, and the
recursive definition of states SEStateOp needed accordingly. The rule is therefore expressed us-
ing a (recursive) auxiliary function that ‘merges’ two SEStateOps, and at the same time turns
each ps: Preds in either of the two SEStateOps into the appropriate conditional. The latter is done
~ by ITE-merge-map, which is then called by the general function ITE-merge. ITE-merge has to
distinguish nine different cases, since either of the two sequences to be merged may be empty or
start with a SE-map or start with a SEStateOp. Define the auxiliary function
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Define the map m: SE-map as

¢

m(n) & <

\

(The annotations y; are just used to give a name to the relevant PredS and make the proof of

let a = names(dom(Op)) in
let r = name(rng(Op)) in
let at = types(dom(Op)) in
let rt = type(rng(Op)) in
let er = readnames(exts(Op)) in
let ew = readwritenames(exts(Op)) in
let ewt = readwritetypes(exts(Op)) in
iet rest = current-names(S)— (mga wmgew L {r}) in
let oldseq = cons(len Seq, index) in
let old = Ax: seq of Name-
evalseq(Ay: Name - 5(oldseq,y), x) in

let newseq = cons(len Seq + 1, index) in
let new = Ax: seq of Name-

evalseq(Ay: Name - G(newseq,y), x) in

{inv.of -Type(at[il)[nm/5(newseq, nm) if n=ali]
| nm: Name] }
{provided pre(new(a), old(er), old(ew)) if n = ewli]

then post(new(a), old(er), old(ew),
new(er), new(ew)) ,

inv_of -Type(ewt[i))[nm/ &(newseq, nm) | nm: Name)}

{provided pre(new(a), old(er), old(ew)) ifn=r
then post(new(a), old(e7), old(ew),
new(er), new(ew)) ,

invoof -Typelrtl[nm/ 5{newseq, nm) | nm: Name]}

{provided pre(new(a), vld(er), old(ew)) if ne rest
then G(newseq, n) = &(oldseq, n)}

Theorem 4.2.10 easier to read.)

Then

([Op),S) — {[1, add-to-SEStateOp(S, m))

§ S A

§

e e ot N !

Y5

I

Figure 4.4: Transition for VDM-operations
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ITE-merge-map : SE-map X SE-map X PredS — SE-map

ITE-merge-map(m;, mp,ps) 2
{if ps then ps; else true | ps; € mi(n)}
U {if ps then true else ps; | psa € ma(n)} if n e domm N domm;

n+
{ {if ps then ps; else true | ps; € mi(n)} if n € domm, —dom m;

{if ps then true else ps, | ps2 € my(n)} if n e dommy —domm,; |

In the first case, one could altematively join the two kinds of expressions to get
if ps then ps; else psy, but in general it is not obvious how to select psy and ps; to get a useful
result.

If the two sequences to be merged have different length, then, by the recursive definition of
ITE-merge below, one will eventually get into the position where one of the sequences starts with
a map, and the other one is empty. This case is handied by

ITE-merge-empty : SE-map X PredS % Index — SE-map
ITE-merge-empty(m,ps,ix) 2
{n — {if ps then ps, else 'G(ix, n) = &(previous(ix), n) | ps1 € m(n)}}
using the auxiliary function previous which, given the index ix of an element of some SEStateOp,
finds the index of the previous element:
previous :Index — Index

previous(ix) £ ifhdix=1
then tlix
else cons(hdix— 1,1l ix)

pre ix # [ ]
Now define
case :seq of SE-elem — {EMPTY, MAP, SES}

case(e-seq) 2 ife-seq=1]
then EMPTY
else if hd e-seq: SE-map
then MAP
- else SES

Then o~

ITE-merge : seq of SE-elem X seq of SE-elem X PredS X SEStateOp — SEStateOp
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ITE-merge(e-seqy, e-seqz,ps,S) &
cases case(e-seq), case(e-seqa) of
EMPTY, EMPTY — S
EMPTY, MAP — let S = add-to-SEStateOp(S,
ITE-merge-empty(hd e-seqz, ps, INDEX(S))) in
ITE-merge([ 1,tl e-seq2, ps, S1) B
EMPTY, SES — let S) = add-to-SEStateOp(S,
ITE-merge([ ], hd e-seqz, ps, S)) in
ITE-merge([ ],tl e-seqa, ps, S1)
MAP, EMPTY — let S; = add-to-SEStateOp(S,
ITE-merge-empty(hd e-seq1, ps, INDEX(S))) in
ITE-merge(ti e-seq1, [ ], ps, S1)
MAP, MAP — let Sy = add-to-SEStateOp(S,
ITE-merge-map(hd e-seq1, hd e-seqa, ps)) in
ITE-merge(ti e-seq, tl e-seq2, ps, St)
MAP, SES — let S = last (SEQ(start-block(S))) in
let S = finish-block(add-to-SEStateOp(S1, hd e-seqy)) in
let S3 = ITE-merge(S2, hd e-seq2, ps, S) in
ITE-merge(tl e-seqy, tl e-seqa, ps, S3)
SES, EMPTY — let S| = add-to-SEStateOp(S,
ITE-merge(hd e-seqy,[ 1,ps, S)) in
ITE-merge(tl e-seq1,[ 1, ps, S1)
SES, MAP — let S| = last (SEQ(start-block(S))) in
let Sp = finish-block(add-to-SEStateOp(S1, hd e-seq2)) in
let S3 = ITE-merge(hd e-seq1,S2,ps, S) in
ITE-merge(ti e-seqi, tl e-seqa, ps, S3)
SES, SES — let Sy = JTE-merge(hd e-seqy, hd e-seqz, ps, S) in
ITE-merg2(il e-seqy, tl e-seqa, ps, S1)
end

Note that this definition implics

len SEQ(ITE-merge(e-seqy, e-seqa, ps, S))
= lenSEQ(S)+ max (len e-seqy, len e-seq)

(proof by double induction over len e-seq; and len e-seq2).
Now the rule describing the operational semantics of if-then-else can be given as

Rule 4.2.11 et ps(S) = @[n/G(cons(len SEQ(S), INDEX(S)), n) | n: Name] in

ps(S)  (sn-seq1,S) — ([ 1, mk-SEStateOp(SEQ(S) —~ e-seqy, INDEX(S)))
—ps(S) ¥ {sn-seqa,S) — ([ 1, mk-SEStateOp(SEQ(S) ~ e-seq, INDEX(S)))
([if @ then sn; else sm],S) — ([1, ITE-merge(e-seq,, e-seqz, ps(S), S))
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assuming that the language of the simplification theory TE(C) (cf. §4.2.4) has the connective if-
then-else. Here “if ¢ then sn; else sny” is the name of the appropriate specification. Note
that the combinator if-then-else and the connective if-then-else are different constructs, of

different types. 4
The simplification theory Th(L) should then contain some rules for handling if-then-else, for
example
if true then ¥4 else ¥yp & W
if false then y4 else Yo < ¥,
and

if ps then y else ¥ <> W

Of course one could additionally introduce two rules that handie the case when either ps(S) or
—ps(S) is known to hold. Although these rules are not strictly speaking necessary since they can
be derived from the above (assuming that the operational semantics given always allow one to
find e-seq; and e-seqz), they would save a lot of simplification work.

An example of the application of these rules for if-then-else is given as part of the example
of a while-loop in §7.3.

4.2.8 Operational semantics of while-loops

Similar to block structures, loops are considered as a single step even though their execution
may consist of any number of steps. This is achieved by describing the results of this execution
sequence in a different SEStateOp or block which is then considered as a single step in the orig-
inal SEStateOp. However, there is an additional complication in that with the usual approach to
operational semantics, using a rule like

(while @ do [spec] od,S)
< (if ¢ then ([specl;while @ do [spec] od) else skip,S)

it is not clear when encountering a while-statement whether to start a new block (because it is a
new while-statement) or continue the current one (because it is a new iteration of a previously
encountered statement). Therefore we introduce two different versions of the while-statement
that allow one to distinguish the two. while-do is the ‘proper’ statement that starts a new block,
and WHILE-DO is an auxiliary version that is used to continue the current block.

This leads to the rules (again identifying the names of specifications with the specifications

they name)
. Rule 4.2.12 V
(WHILE @ DO sn OD,\astSEQ(start-block(S))) — ([1,5")
(while ¢ do sn od,S)
< ([, add-to-SEStateOp(S, finish-block(S")))
<Rule 4.2.13

+ (WHILE ¢ DO sn OD,S)
< (if @ then cons(sn, WHILE @ DO sn OD) else [],5)
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An example of symbolic execution of a while-loop using these rules is given in §7.3.

4.2.9 Handling non-determinism

As mentioned before (in §4.1.4), in symbolic execution the effects of non-determinism should be
captured by the state rather than by supplying different transitions that apply to the same configu-,
ration. As an example, consider the rule given below describing the operati'&lal semantics of the
command IF (as defined in §4.1.4). Since it is quite similar to the rule for if-then-else as given
in §4.2.7, only the analogue of ITE-merge-map is given here, the other cases are completely anal-
ogous to if-then-else. In IF-merge-map, the case of n € domm; N dommy is treated slightly
differently from the way it was done in ITE-merge-map in order to demonstrate the ‘joining’ of
expressions as mentioned after the definition of ITE-merge-map.

IF-merge-map : SE-map x SE-map X PredS X PredS — SE-map

IF-merge-map(my, my, ps1,psz2) oY
( {if ps1 = ps1’0 psa — psy’ fi
| ps1” € mi(n) Apsy’ € ma(n)} if n € dommy N domm;

{if psy = ps1’0 psy — true fi

nr— < .
{ | ps1” € mi(n)} if n € domm; —dommy

'}

{if psy — true O psy — psy’ fi
| ps2’ € ma(n)} if n € dommy —dommy

\ 7/

Rule 4.2.14 let psi(S) = ¢i[n/G(cons(len SEQ(S), INDEX(S)), n) | n: Name] in

my,my: SE-map
psi(S) + {[sn1},S) «— ([ ], add-to-SEStateOp(S, m1)
ps2(S) F {[sn2l, §) = ([ 1, add-to-SEStateOp(S, my)
([if ¢ = smO@ — sny £11,S)
< ([, add-to-SEStateOp(S, IF-merge-map(my, mz, psi(S), ps2(S5))))

Again, as for if-then-else, the conscquent transition of this rule is used to transform the com-
binator 1f-£1 into the connective if-fi. This connective is then dealt with in TEZZ',) by rules such as
those below. These simplification rules are slightly more complicated than those for if-then-else
since they have to consider the different alteratives in parallel — in symbolic execution it is not
enough to know if one of the guards is true.

AP
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4.3 Language genericity

One important and innovative aspect of IPSE 2.5 is its emphasis on genericity with respect to the
languages and development methods supported. The most important aspect of such genericity in
the context of symbolic execution is genericity with respect to the specification lan guage, symbolic
execution should be supported for a variety of specification languages rather than a single one.
This implies that one has to provide a description of the syntax and semantics of the language (as
described in §4.2), and symbolic execution has to be based on these descriptions.

Given the mechanism for describing the (operational) semantics of a language as used for
symbolic execution and as provided in §4.2, the (uestion of the mechanism’s genericity arises.
How generic is this mechanism, and how wide a class of specification languages can therefore be
symbolically executed using the approach described in this thesis?

§4.2 showed that the approach is well suited 1o model-oriented specification languages like
VDM or Z, since they are explicitly based on the notion of states and specify a software system in
terms of state transformations. The same applies to the GIST specification language.

Furthermore, any programming language fits, on some level, into the description mechanism
provided, since its semantics can always be expressed in terms of an interpreter. However, this
interpreter might work on a very low level — the hardware level, in the extreme — in which case
the results of symbolic execution of a program, based on such an operational semantics, would
not help the user to understand the program at all. It is therefore not enough that the semantics
of a specification language can be expressed in the way described. This must indeed be a natural
way of expressing them if the resulting instantiation of SYMBEX is to fulfil its intended purpose.
Of course, this is a very vague requirement, there is no clear-cut distinction between ‘natural’ and
‘unnatural’ descriptions, but this only reflects the fact that the distinction between languages that
can usefully be supported and those that cannot is not clear-cut itself. The more natural a language
description is, the more likely symbolic execution will be able to help the user in understanding
specifications in this language. For example, it is quite natural to express the semantics of VDM
or Z in this way, while it would be very unnatural to impose a notion of state on an algebraic
specification language (cf. below).

This discussion has so far ignored the fact that the operational semantics needed for symbolic
execution are different from those needed for actual execution. However, this does not really mat-
- ter, since one can mechanically generate the former from the latter: given the ‘actual’ operational
semantics and a ‘symbolic’ configuration, generate the new symbolic configuration by taking all
matching actual transitions and combine their results into a suitable case-statement. These case-
statements then form (after some syntactic transformations, in particular introduction of &, cf.
§4.2.4) the PredS description values of identifiers in the new state, and are used to construct the
Tiew SEStateOp in the resulting configuration. See the rule for if-then-else in §4.2.7 for an
example. Again, the operational semantics resulting from this process might not be very natural
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and therefore not lead to any useful results. The process was only described in order to show that
for any programming language there is a level of interpretation at which the language may be
symbolically executed using the approach described here.

Symbolic execution was originally developed (in systems such as EFFIGY or DISSECT, cf.
§2.1.2) for conventional imperative programming languages such as PASCAL 6r FORTRAN. Any
such language can also be symbolically executed in a very natural way under our model of sym-
bolic execution: if the identifier x gets assigned the symbolic value v(x) by ‘conventional’ symbolic
execution, then under our model x gets assigned the description value ‘x = v(x)’ (but again first
substituting any identifiers y by &(index,y) for the appropriate index).

Functional languages such as LIsP [Al178, §1.2], and logic programming languages such as
PROLOG [SS86, §3.5], support some form of symbol processing directly. What influence does this
have on the way they can be symbolically executed themselves?

LISP can be said to consist of a functional part (‘pure’ or ‘applicative’ LISP) and a non-
functional part [All78, §4.1]. The treatment of the non-functional part of LISP is not essentially
different from the treatment of imperative languages. The functional part of LISP has to be treated
differently, since it does not use the concept of an external state. Instead, variables have values
associated with them in association lists or a-lists [Al178, §3.3]. One would therefore have to
modify the concept of symbolic execution to consider such a-lists as a form of state, which im-
plies that some functions have a side-effect since they change the a-list. With this modification,
our model of symbolic execution should be well suited to cope with functional languages such as
LisP and provide useful results.

PROLOG does not have an obvious notion of state that the operational semantics could be based
on. Under a ‘natural’ definition of the denotational semantics of PROLOG, given a set A of clauses,
an n-ary predicate symbol denotes an n-ary relation over the Herbrand universe of A [VEKT76].

There are a number of different concepts of state which could be defined for PROLOG: for
example, consider the set of n-tuples known to belong to the relation (i.e. the set of ground clauses
known to be provable from A) at any given stage as a state, with a suitable transition induced by
the inference system and search strategy (similar to the transformation T used in the fixpoint
semantics in [VEK76]).

Slightly closer to the notion of state used in this thesis would be the definition of a state as a
substitution that maps variables to terms such that the goal statement is provable from A.

However, none of these concepts of state really fits into the semantic framework provided
here, since none uses states in the sense of mappings from program variables to their values.
Therefore, it does not seem possible to usefully apply the ideas of this thesis to PROLOG.

Going back to specification languages, a different style of specifications is used in algebraic
specification languages. These specify a software system as an abstract data type (ADT), described
in terms of equations or rewrite rules [EM85]. The natural way to define the semantics of such
an ADT is as a class of algebras, using an initial, loose, or final imerpretation of the ADT. Again,
there is no obvious concept of state involved and algebraic specification languages therefore do
not fit into our model of symbolic execution.

So far, none of the languages considered was suitable for the specification of interactive,
distributed or concurrent systems, called ‘reactive systems’ [Pnu86]. As an example of such a
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language, consider Hoare’s CsP [Hoa85]. In CsP, individual processes can be specified in Z, but
CsP extends this to provide a notation for combination and communication of such processes.
Since the specifications of individual processes use the notion of state, the semantics of CSP can
be expressed in the way described in §4.2: the individual processes denote a relation on states,
and CsP can be considered as a (very elaborate) combinator language for such relations. CSP can
therefore be executed symbolically in the way described in this thesis.

Another language that fits very well into the framework described here is LARCH — or the
family of LARCH-languages, to be exact. Each member of this family has a component common
to all members of the family, called the LARCH shared language, and a component particular to
this member, called the interface language [GHW8S5, Picce I]. The interface languages are based
on predicate calculus and describe specifications, here called procedures, in terms of a requires
predicate providing a pre-condition, a modifies at most clause giving the variables writable by
the procedure, and an ensures predicate which is a predicate over two states and provides a post-
condition. Such procedures can thus be symbolically executed in just the same way as e.g. VDM
operations.

The shared language is essentially an algebraic specification language. It is based on equations
which give rise to a collection of theories. These theories in turn define the notion of equality as
used in the interface language. In symbolic execution they can be used to do simplification by
extending the notion of equality LARCH-terms to PredS. Essentially, this means that a large part
of the simplification theory Ti;(Z) for LARCH (as mentioned in §4.2.4 and described in more detail
in §5.3.2) is already provided by the shared language.




Chapter 5

Symbolic execution and formal

reasoning

“Well,” said Owl, ‘the customary procedure in such cases is

as follows.”
“What does Crustimoney Proseedcake mean?” said Pooh.

“For | am a Bear of Very Little Brain, and long words Bother me.”

“lt means the Thing to do.”
“As long as it means that, | don't mind," said Pooh humbly.

A.A. Milne: Winnie-the-Pooh

5.1 Introduction

This chapter analyses the relationship between (our model of) symbolic execution and formal

reasoning. The term “formal reasoning” is used here rather than, say, “theorem proving”, in order
to emphasize the fact that this analysis is not only concerned with the activity of theorem proving
itself, but also with related activities such as structuring and storing of theories.

As shown in §4.2, the operational semantics of a specification language can be expressed in

terms of rules and transitions, and transitions can be considered as a particular kind of proposition.

The operational semantics then form a theory, and applying rules or transitions from this theory

to a configuration is a form of formal reasoning.
Before such theories of operational semantics are investigated in more detail in §5 .3, the topic

of simplification is taken up again. While §4.2.4 only considered some technical points, §5.2
will discuss the general approach to simplification taken, and consider simplification as a formal
reasoning activity.

First, however, a brief introduction to how one can app
guage to derive the wanted result: assume one is given a configuration (

ly the operational semantics of a lan-
sn-seq,S) and operational

69



CHAPTER 5. SYMBOLIC EXECUTION AND FORMAL REASONING 70

semantics of the relevant language. Such a configuration, as defined in §4.2.3, consists of a
sequence sn-seq: seq of SpecName of specification names and an SEStateOp S, and denotes an
interpreter configuration in which the sequence of specifications referred to by sn-seq is to be
applied to S. The operational semantics will be expressed as a collection of theories, its details
are described in §5.3.

We now want to transform the configuration (sn-seq, S) into an equivalent configuration (under
the equivalence relation induced by M cony) of the form ([],5"), since this provides the resulting
SEStateOp S’. This transformation is done by repeatedly applying transitions from the operational
semantics to the configuration until it has the right form.

Considered as an object handled by FRIPSE, a transition is an expression of type Prop (propo-
sition). The rules of the operational semantics correspond to axioms or rules as defined in the
specification of FRIPSE (cf. Appendix C), and thus consist of zero or more assertions (possibly
transitions) and sequents as hypotheses and an assestion which is its conclusion, and, in the case
of (derived) rules, a justification.

So what exactly happens if one has a configuration (sn-seq, S) and wants to evaluate it? There
should be (an instantiation of) a rule that has as its conclusion the transition (sn-seq, S) — conf
for some configuration conf. The hypotheses of such a rule consist of a (possibly empty) set of
transitions and PredS (predicates on sequences of states). In the example of the configuration
({OP1], §) (Example 4.2.9) one would get

conf = ([ ], add-to-SEStateOp(S, m))

with no hypotheses.

Before a rule can be used, its hypotheses would have to be discharged. For each Preds this is
done by trying to prove it from the assumptions collect-preds(S, [ ]) (as defined in §4.2.1), working
in the simplification theory TEEZ) (cf. §5.3.2) which is a parent theory of the theory of operational
semantics itself.

A transition is discharged by recursively running the same algorithm on this transition as on
(sn-seq,S) — conf:
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transform(trans) £
1. Try to find a rule r with (instantiated) conclusion trans
cases Number of such rules of
0 — answer NO and stop
1 — make the appropriate substitution and store it
> 2 — let user decide which one to use
end

2. for every preds in hyps(r)
do try to decide — is it the conclusion of a provable rule,
where all hypotheses are known to hold?
cases result of
true — nothing needs to be done
false — ignore the rule r and go back to 1.
otherwise keep it as a ‘provided’ condition on future results
end

3. for every trans in hyps(r)

do transform(trans)

4. Tf you get this far, the collected substitution applied to trans gives
the provable instantiation

This recursive algorithm will be expressed as a proof tactic (cf. §5.2.2), which can then be used to
find a proof of the relevant transition. Altematively, it could be expressed as a program procedure
or an oracle (see §5.2.1).

If conf has the form ([ 1,S’) then symbolic execution of sn-seq on SEStateOp S is finished with
the resulting SEStateOp S’. If not, then conf must itself have the form (sn-seq’,S’). In this case
there should be (an instantiation of) a rule that has as its conclusion the transition (sn-seq’,S") —
conf” for some configuration conf’. Now one needs a rule that says: if the transitions a — b and
b < c are (instances of) conclusions of rules, then one can derive a rule with conclusion a — ¢,
i.e. transitions are transitive. In the example, this leads to a rule with conclusion (sn-seq,S) —
conf’, and the same cycle starts again. if conf’ has the right form, symbolic execution is finished,
otherwise there should be a transition starting with conf’. This cycle is repeated until one gets to
a configuration of the form ([],57).

Effectively, in symbolic execution one tries to prove a theorem but, in contrast to the usual
way of doing so, one does not know the conclusion of the theorem when starting to prove it.
Instead, one knows that it should take the form (sn-seq,s) < §’, and that at any stage either
there is only one rule that applics, or the user gets the choice which one to apply. This leads to
Requirement 1 in §6.4, FRIPSE must allow proofs with unknown goals.
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5.2 More on simplification and formal reasoning

It is important in this context to distinguish two different kinds of simplification, which get used
for different purposes. First there is simplification by transformation into a suitable normal form,
such as CNF, DNF or if-then-else NF. These normal forms are very useful if the simplified terms
are to be handled mechanically by other tools, but in most cases they do not look simpler to a
human user reading them. In some cases such normal forms can be found as normal forms with
respect to an appropriate rewrite system, in other cases one needs a more general algorithm for
transforming a given term into its normal form. A special case of such tool-oriented simplification
is simplification using decision procedures for deciding the validity of a formula, i.e. deciding
whether it can be simplified to true or false.

The second form of simplification is simplification with respect to a user: making an expres-
sion easier to understand for the user. Strictly spcaking, it might be better to use the more general
term ‘transformation’ in this case instead of ‘simplification’, since it depends very much on the
individual user whether one term is simpler or more complicated than another. ‘Simplification’
used in this second meaning is a very subjective term, it always denotes simplification with respect
to a particular user. ‘Simplifying’ a term so as to make it easier to understand for one user, might
make it completely incomprehensible to another. This implies that this form of simplification has
to be highly interactive and give the user a lot of choice about the information presentation, for
example what simplification to apply.

Sometimes the two forms of simplification overlap, in particular when a term can be simplified
to true or false, but in general the two are concemned with rather separate issues. Since symbolic
execution as described in this thesis is concemed with making a specification easier to understand
for a user, the following is only concemed with the second, user-oriented kind of simplification,
and only considers the first one if the two overlap.

What support is needed for simplification in the context of IPSE 2.57 Simplification means
replacing a term with a different but equivalent one (ignoring for now “weak” simplification
as used in weak symbolic execution), and therefore needs a means of checking or proving the
equivalence of terms. This needs to be an interactive process to allow and support user-guided
simplification.

To support simplification in the context of symbolic execution, one therefore needs an inter-
active formal reasoning tool. For SYMBEX, this is provided by FRIPSE.

The simplification transformations used in SYMBEX (like those in FRIPSE) can take any one
of the following forms:

e Applying a rewrite rule/inference rule. These are the main form of simplification transfor-
mations..-. )

e Applying an ‘oracle’, such as a decision procedure or an algorithm for doing integer arith-
metic. Oracles are used in a similar way to rules, but can be written in a general program-
ming language, cf. §5.2.1.

o Applying a tactic. Tactics combine rules and oracles using suitable combinators, and thus
enable the user to do larger simplification steps than would otherwise be possible. They are
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described in more detail in §5.2.2.

.

The justification of a simplification transformation can come from one of several different sources:

e From the logic: a term may be simplified to another if the two terms are equivalent in the
underlying logic. -

e From a theory used, e.g. integers: a term may be simplified to another if the two terms are
equivalent in the theory used.

e From a particular specification: a term may be simplified to another if the two terms are
equivalent in the theory described by the specification. This includes for example folding
and unfolding of functions defined in the specification.

The distinction between these three is mainly practical, rather than theoretical. A specification
can be looked upon as defining a theory, although obviously a very specific one which is of little
general use. Similarly, a logic can be considered as a theory that is mainly concerned with truth
and falsehood of propositions.

Now assume one wants to show that a PredS ps; inside an SEStateOp S can be simplified
to psa. Then the rule expressing that ps; and ps2 are equivalent may contain as hypotheses any
number of PredSs that occur in S up to the current stage that contains psi, since these PredSs are
known to hold. The specification of SIMPLIFY in §6.1.2 will formalise this notion of ‘up to the
current stage’.

As an example, assume that at some stage in the symbolic execution of a specification one
has pushed an element e onto the stack st and this is described by giving the description value

6([3], s1) = push(65([2], st), €) 5.1
to the Name st. If in the next step one pops an element from st
6(14], s2) = pop(6([3],51)) (52)
then the PredS (5.1) is known to hold and can be used to simplify (5.2) to the equivalent
a([4], st) = 6([2], s1) (5.3)

The discussion so far always assumed full symbolic execution, where simplification is an
equivalence transformation, since every step has to preserve the denotation of the relevant con-
figuration. Weak symbolic execution allows that (SEQS of) the denotation of S may increase. In
weak symbolic execution one may therefore simplify psy to ps; if ps; => ps;. Equivalence is not
required.

However, even in full symbolic execution one may sometimes seemingly relax this restriction.
An expression, such as a description value, may contain more information than needed and wanted.
For example, one of the conjuncts in a conjunction forming a description value of a variable x
may seem irrelevant, perhaps because it does not contain x. Just deleting this information would
in general lead to weak symbolic execution, but instead one may hide it, for example by replacing
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it with “...”. This way, the information is still stored in the state, but the user does not see it and
cannot get distracted by the irrelevant PredS. The “...” act as a marker for the hidden information
and allow the user to get to it.

If one wants to delete a ps: PredS rather than just hide it, then one has to show that it can be
simplified to true, i.e. it is provable from the assumptions. Then ps is equivalent to true and can
therefore be replaced by it.

Since the PredS true does not really put any restrictions on the set of states modelled by an
SEStateOp S, it does not influence the denotational semantics of S (cf. definition of M sgswceop
in Figure 4.3) and can therefore be deleted from any set of PredS SEQ(S)(n). This form of sim-
plification extends the model of simplification described until now, since here a PredsS is deleted
rather than replaced by another, equivalent Preds.

One case when this can be particularly useful is the deletion of duplicate PredSs, introduced
for example by the rule for VDM-operations in Figure 4.4, where m(n) contains the same PredS
provided... for different identifiers n. If the user wants, all but one of these PredSs can be ‘sim-
plified away’, since they are provable from the one that remains.

One has to be careful about simplifying too much, since this might lose valuable information.
For example, if two operations cancel each other out, such as push and pop, the user should at
least be shown this fact explicitly. A similar case is an if-then-else-statement, where from
the path condition it may follow that only one branch can be taken, the other one is never taken.
This is a ‘surprising’ property that the user should be told of, since it might point to an error in
the specification. The problem in both cases is that the simplification preserves the denotation of
the state, but the information about the computation itself is not captured by the denotation and
therefore in general not preserved by simplification. In many cases, of course, the whole point
of simplification is to remove distracting information about the computation that is not (or no
longer) needed. To counter this problem, when a displayed expression has been simplified then at
first both the un-simplified and the simplified version should be displayed (but allowing the user
to tumn display of the un-simplified version off). After that, only the simplified version need be
considered (i.e. this version is automatically remembered — of course this only applies to those
simplifications designated as “automatic” by the user).

A very basic simplification tactic should be applied automatically after each symbolic exe-
cution step. This tactic should simplify arithmetic expressions, replace variables by their actual
value if possible, etc. The user interface of simplification is discussed in §6.2.5.

§.2.1 Oracles

- Oracles can be considered as a generalisation of (semi-) decision procedures. In its simplest form,
an oracle takes a formula as an argument and answers YES if it can prove it; i.e. if the answer is
YES, then the formula is provable. This can be extended to oracles which transform an input term
into an equivalent output term which is in some sense ‘better’, e.g. because it is simpler or in some
normal form. An example of this is the oracle that takes (ground) terms of integer arithmetic and

“evaluates them.

Oracles complement tactics in that they describe transformations as well, but can be written in
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a general programming language. This greater expressiveness introduces the danger of introducing
oracles that are not correct. For every oracle one therefore has to prove that input and output are
equivalent in the relevant theory, similarly as for rules.

The reason for the introduction of oracles is that a number of important transformation and
simplification algorithms can not, or at least not reasonably efficiently, be immplemented using
only proof rules. Examples where this is the case are integer arithmetic, and transformation-of
formulae into prenex normal form. In particular the first one will probably be needed a ot in
theorem proving, but evaluation of arithmetic ground terms by application of proof rules, say the
rules of Peano arithmetic, would be extremely slow.”

5.2.2 Tactics

Tactics are used to relieve the user from some of the tedium of fully formal theorem proving, and
to enable her to do larger proof steps in textbook fashion rather than explicitly apply inference
rules one at a time. They are built up from inference rules and oracles, using combinators.

A typical simplification tactic for use in symbolic execution would for example unfold certain
function definitions, replace variables by their actual value if they have one, evaluate arithmetic
ground terms, and eliminate the constants true and false from logical expressions whenever pos-
sible.

Combinators do have read access to the state of the proof, but they do not have write access,
they never change the state of the proof directly. Instead, they guide the application of rules
and oracles. This guarantees that, assuming that all rules and oracles are correct, the result of
applying a tactic also is correct, since it has been achieved by only applying correct primitives.
Tactics could therefore be considered as functions on the abstract data type of provable rules and
oracles. Any application of a tactic can only change the abstract data type by using the basic
functions explicitly provided, i.e. rules and oracles.

Tactics are more expressive than derived inference rules, since

e they allow iteration. Although ii is conceivable that the language for expressing derived
rules could by extended by some form of - - --operator to handle iteration, this will not be
done in either SYMBEX or IPSE 2.5.

e they can fail. Combinators can make use of this to achieve backtracking (e.g. using orelse).
For example, the tactic #; orelse #; first runs the tactic #; which might try to apply a certain
proof rule. If this fails, say because no substitution is found that makes the rule applicable,
then 1, is used instead, which might try to apply another proof rule.

e tactics allow combination of rules and oracles (and other tactics).

However, the first two reasons only apply when comparing individual rules with tactics. The
effect of a tactic that is built up using only rules and no oracles is exactly the same as that of a
(possibly infinite) set of derived rules.
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A number of important tactics will be provided as part of SYMBEX and/or FRIPSE, plus a tactic
language that allows the user to write her own tactics. The latter is particularly important to allow
the user to tailor simplification to her particular needs.

5.3 The theories of operational semantics of symbolic execution

The theory of the operational semantics of a particular language £ consists of a theory ThOpSem
common to all such theories, and a language-specific part ThOpSem(L). Simplification is based
on a theory Th(L) which includes the logic used for describing £ (for VDM, this would be LPF),
plus the theories of its basic data types. Additionally, every specification module has a theory
ThModule(Mod) of its own containing, among other things, the type and function definitions of
the module.

So far, only ‘full’ theories were mentioned, i.e. theories that describe the operational semantics
of full symbolic execution (cf. Figure 4.2). Additionally the ‘weak’ theories WThOpSem(L) and
WThModule(Mod) are needed that describe weak symbolic execution where some of the restric-
tions on the result state are ‘lost’, leading to non-faithful transitions in the operational semantics.

These theories are all based on the same logic, a common ‘logic of operational semantics’,
rather than having a collection of different language-dependent logics. Here one has to distinguish
between the logic of a specification language, which is included in Th(£) and used for reasoning
about terms of the language, and the logic used for reasoning within the various theories about
transitions etc., which is independent of the language used. LPF was chosen as this common logic.

Before describing these theories in more detail, the following diagram shows the parent —
child relationships existing between them.

Th(L)

ThOpSem ——  ThOpSem(L) — ThModule(Mod)

WThOpSem(L) — WThModule(Mod)

Several of the definitions in this section were already introduced carlier. The new definitions
are given because they now define objects in the various theories of operational semantics, used
by SYMBEX, while before they defined general data structures.

53.1 The common theory ThOpSem
Sorts

“The theory ThOpSem should have the sort symbols name, preds and SEStateOp. Here one has
to distinguish between the primitive sort symbols name and preds as introduced in ThOpSem,
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and the defined sorts Name and PredS which are language-dependent and therefore introduced in
ThOpSem(L). ThOpSem(L) will inherit ThOpSem via a morphism translating name to Namé and
preds to PredS.

ThOpSem also has the sort constructors seq of A for sequences, with type parameter A, and
map A to B for maps and A | B for type union, both with type parameters A andB. All these sort
constructors have their appropriate theory associated, either as part of ThOpSem itself, or, more’
likely, as a parent theory. Also needed is the sort Prop of 'propositions. Among other things, this
includes equations and transitions.

Transitions
ThOpSem has the primitive (polymorphic) constant
—:AXA — Prop

which denotes transitions, and the constants from and o denoting the inverses of <. Since — is
polymorphic, from and to cannot be declared as having a certain type.
Transitions are reflexive and transitive:

FE< E

and
Ei— Ep E; — Ej
Ei— FEj

and from, to are the inverses of «—:

F from(Ey — E3) = E;
F to(Ey — Ep)=E3
from(1): A
to(1): A
SEStateOps

Define
Index = seq of N

A state as used for describing the operational semantics of a language for symbolic execution is
defined recursively as

SE-map = map name to set of preds

SE-elem = SE-map | SEStateOp

SEStateOp :: SEQ : seqof SE-elem
INDEX : Index
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where

inv-SEStateOp(mk-SEStateOp(Seq, ix)) &
Seq #[]
AhdSeq: SE-map
AVk < lenSeq - Seq[k): SEStateOp = INDEX(Seq[k]) = cons(k, ix)

5.3.2 The simplification theories Th(L) and Ti'l(v[:)

Now assume that a fixed specification language £ is given. Let Th(L) be the theory used to reason
about terms in £. For example, Th(VDM) = LPE. Th(L) should not be considered as denoting one
parameterised theory, but rather a collection of different theories, one for each language L.

Th(L) is based on the logic of £, with type Propgimp of propositions, and additionally contains
the theories of the basic data types of £ such as sets. scquences, etc. It is thus the theory needed
for reasoning about £ in general, independent of symbolic execution.

Let Name be the type of identifiers or program variables of £, as before. For a typed language
£, this would actually have to be a collection of types, but for simplicity this fact is ignored here.
Let Val be the type of values that an identifier may take. 'Again, for a typed language this would
have to be a collection of types.

We require that Propsimp includes the constants true and false, and operators A, provided-then,
— and <. Also needed are the functions start-block and finish-block, as defined in §4.2.5. These
are needed in order to be able to describe the operational semantics of blocks (cf. §4.2.5) or loops
(cf. §4.2.8). Furthermore, the language should be ‘reasonably expressive’ in the sense that the
transitions of the operational semantics of £, as will be discussed in §5.3.3, can be expressed.

One needs to introduce an indexing mechanism to differentiate between the values of program
variables (identifiers or names) at different stages in an execution sequence. To do so, we introduce
sequences (0;); of states, where 0;: 2. Since the definition of SEStateOp is recursive, simple
sequences are not enough — we actually need iterated sequences where o; might be a sequence
of states itself. This is modelled by introducing a constant symbol & with arity (2,0), which is the
name of the value of the identifier n at a given stage in the execution, with the only axiom

i-seq: seq of Nj i-seq # {1 n: Name
G(i-seq, n): Val-ref

For simplicity, the element i:N will in the following sometimes be identified with the sequence
i-seq = [i}. '
- Now define a If’ir,edS as a proposition of Th(L) where each Name n has been replaced by 6(i-seq, n)

for some i-seq.
~ ©: Propspec i-seq: seq of N

d[n/5(i-seq, n) | n: Name): PredS
These are the predicates the user actually gets to see as description values of variables at any stage
*in the symbolic execution. The resulting new theory with PredsS instead of Propsin, will be called
T F(Z). Effectively, this new theory then contains multiple copies of Propspec, one for each value




CHAPTER 5. SYMBOLIC EXECUTION AND FORMAL REASONING 79

- of i-seq. Note that, in the example of LPF, if n gets replaced by (i, n) then “n gets replaced by

a(i—1,n).
Also needed is the following auxiliary function:

mentions: PredS — set of Name

which collects the identifiers n mentioned in a given ps: PredsS, i.e. those n for which ps contains ,
- &(i, n) for any i. This function has to be defined recursively over the syntax of P redsS (or Propsimp).
—/ The theory TZ(Z) is used for simplification: ps;: PredS inside some SEStateOp can be simpli-
fied to (i.e. replaced by) psy: Preds if they are equivalentin T;;(Z), given that all Pred§ that occur
in the SEStateOp at an earlier stage hold. Note that, in symbolic execution, one is not directly
- interested in the theorems of T;(Z) as such, but indirectly in them providing a justification of
those theorems of ThOpSem(L) which describe simplification steps.

533 The language-dependent theories T. hOpSem(L)

Again assume one is given some fixed language £ and wants to describe the theory ThOpSem(L)
of its operational semantics. As before, ThOpSem(L) does not denote one parameterised theory,
T but a collection of different theories. ThOpSem(L) is the theory that describes the operational

= semantics of symbolic execution of a particular language £. It inherits as parent theories the
theory ThOpSem of operational semantics in general (via a morphism translating name to Name
and preds to PredsS), independent of the language £, and T F(Z), the simplification theory of L.
- Let Spec be the type of all specifications and programs, i.c. all terms in £ denoting a bi-
nary relation on states. SpecName is the type of specification names, and SpecMap associates
specification names with specifications:

SpecMap = map SpecName to Spec
j Configurations consist of a sequence of SpecNames and an SEStateOp:

Conf :: SNSEQ : seq of SpecName
T STATE : SEStateOp
- One can now introduce the transitions and transition rules describing the language £ as axioms
or rules of ThOpSem(L), as described in §4.2, and derive the wanted transitions from them.

. 534 The theories ThModule(Mod) of specification modules
H A specification module Mod! consists of
i o type definitions
ﬂj  function definitions
. e definitions of specifications. Here specifications are terms denoting a relation on states. In

‘ VDM, these would be called operations.

- INote that a specification module is similar to, but not the same as, a Module in the BSI-Protostandard for VDM
! [And8s, BSI8S].

L
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The theory ThModule(Mod) of a specification module then inherits the theory ThOpSem(L)
of the language used and additionally contains

e symbols for all the defined types of the module, plus their definitions

e symbols for all the functions of the module, plus their definitions (axiomatic or otherwise)
e a constant specmap: SpecMap.

e transitions found by symbolic execution, expressed as rules.

However, in ThModule(Mod) all these definition have to be expressed in the language of FRIPSE
rather than the specification language, since they arc to be part of a FRIPSE theory. Since they are
originally expressed in the specification language (and kept on the LHS, cf. §1.4), they will have
to be translated first.

The constant specmap

First we have to define the following auxiliary functions. is-prim-constant-of checks whether a
given constant symbol is declared in the theory referenced by a given thr: Theory-ref. specs takes
a reference to a theory (it will be applied to theories of specification modules) and retums the
names of specifications in the domain of the constant specmap, i.e. the names of specifications in
the module. From now on, specmap will be a fixed constant symbol of type CESymb.

is-prim-constant-of (c: CESymb, thr: Theory-ref) r:B
ext rd fripse : Store

pre thr € dom THS(fripse)

postr <> ¢ e dom PCE(EXSIG(THS(fripse)(thr)))

Alternatively, one could introduce specmap as a defined constant rather than a primitive constant.
I have not specified this alternative here since in a future version of the specification of FRIPSE,
the two concepts will be merged anyway.

specs (thr: Theory-ref) r: set of SpecName
ext rd fripse : Store
pre thr € dom THS(fripse)
A is-prim-constant-of (specmap, thr)
A B THS fripse)unr) SPecmap: SpecMap
post Vsn: SpecName - sn € r & Frys(ripse)ehr) Sn € dom specmap

We require for any theory ThModule(Mod) that the axioms provided about specmap ensure that
specs is implementable.

w



CHAPTER 5. SYMBOLIC EXECUTION AND FORMAL REASONING 81

5.3.5 The weak theories WThOpSem(L) and WThModule(Mod)

=,

The theory WIThOpSem(L) includes those rules of the operational semantics of £ which are not
faithful (and therefore do not describe full symbolic execution) but which do describe weak sym-
bolic execution. It has ThOpSem(L) as a parent theory. The PredS-information contained in an
SEStateOp after weak symbolic execution is also correct under full symbolic execution, but it may
be incomplete and not fully describe the results of actual execution (cf. §4.1.1). ’

The theory WThModule(Mod) merges information about the module Mod and information
about weak symbolic execution. Therefore it is defined as a theory that does not contain any
constants or axioms itself, but only the two parent theories ThModule(Mod) and WThOpSem(L).

One can see that from the point of view of the theories involved, weak symbolic execution
is not essentially different from full symbolic execution. The rules used take the same form,
and they will be applied in the same way. The essential difference between the two is that the
rules for weak symbolic execution convey less information in the sense that the sets of PredS
one gets as values for the different Names may be smaller, and the individual PredS may only be
consequences of rather than equivalent to those one gets from full symbolic execution. However,
this does not affect the structure of these rules, indeed a rule describing weak symbolic execution
of one operation may at the same time describe full symbolic execution of some other operation:
let SORT1 be an operation that sorts a list of Persons by their age. If several Persons have the
same age then they may be put in some arbitrary order. Altematively, SORT?2 requires that in
this case they should be ordered alphabetically on their names. Then in weak symbolic execution
of SORT?2 the additional requirement might be dropped and thus lead to the same result as Sfull
symbolic execution of SORT1.



Chapter 6

The symbolic execution system

SYMBEX

‘Alright,’ said Deep Thought. ‘The Answer to the Great Ques-
tion ...

Yes ...V

‘Of Life, the Universe and Everything ...’ said Deep Thought.

Yes ...r

‘Is ..." said Deep Thought, and paused.

Yes ...V

‘Is ...’

Yes ...\ .7

‘Forty two," said Deep Thought, with infinite majesty and calm.

Douglas Adams: The Hitchhiker’s Guide to the Galaxy

6.1 Specification of SYMBEX

This specification makes heavy use of other work within IPSE 2.5, in particular the specification
of FRIPSE {LM88]. A short summary of the data structures and functions from [LM88] used in
this thesis is given in Appendix C.

"6.1.1 Data structure and some auxiliary functions
SEStateOp\
Define

Index = seq of Nj
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A state as used for describing the operational semantics of a language for symbolic executign is
defined recursively by

SE-map = map Name to set of PredS

SE-elem = SE-map | SEStateOp ~

SEStateOp . SEQ : seqof SE-elem
INDEX : Index

where

inv-SEStateOp(mk-SEStateOp(Seq, ix)) 2
Seq # []
A hdSeq: SE-map
AVk <lenSeq - Seqlk): SEStateOp = INDEX(Seqlk]) = cons(k, ix)

This is the same definition as in the definition of the operational semantics of symbolic execution
in §4.2.1, repeated in the theory ThOpSem (described in §5.3.1). However, it is now considered as
a part of the SYMBEXSTATE, while before it was a type defined within the operational semantics
(§4.2.1) or a FRIPSE-theory (§5.3.1). Similarly, some of the functions defined below have been
defined before in §4.2 or §5.3. In the implementation of SYMBEX, a translation mechanism will
be needed that translates between these different versions, in particular between an SEStateOp in
the SYMBEXSTATE and the equivalent one in ThOpSem (cf. §6.3). This will be necessary so that
symbolic execution on the SEStateOp in SYMBEXSTATE can be performed according to the rules
of the theory ThOpSem.

Auxiliary functions

The function gez-element gets a particular element of the sequence in an SEStateOp or one of its
sub-sequences, as selected by its argument ix:

get-element : SEStateOp X Index —» SE-elem

get-element(S,ix) £ iffrontix =]
then SEQ(S)lastix]
else get-element(SEQ(S)[lastix], front ix)

pre ix # [ ]
Adffrontix # [ ]
then SEQ(S){lastix]: SEStateOp
A pre-get-element(SEQ(S)[last ix], front ix)
else true

N
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The function current-index finds the current or last index in an SEStateOp:

current-index : SEStateOp — Index

current-index(S) 2  iflastSEQ(S): SE-map
then [lenSEQ(S)]
else current-index(lastSEQ(S)) ~ len SEQ(S)

current-index(S) is always the index of a SE-map:
Lemma 6.1.1

VS: SEStateOp -
pre-get-element(S, current-index(S))
A get-element(S, current-index(S)): SE-map

Proof See Appendix A4. O

The function previous, given the index of an element in SEStazeOp, finds the index of the previous
element:

previous :Index — Index

previous(ix) 4 ifhdix=1
then tlix
else cons(hdix— 1,1lix)

pre ix # [ ]

We now introduce the function collect-preds, which collects into a set all the PredS in a given

SEStateOp S, up to a certain element (given as argument ix) in the execution sequence of S. If ix
is empty, then all PredS in S are collected:

collect-preds : SEStateOp X Index — set of PredS

collect-preds(S,ix) &
let ix’ = if ix =[] then [len SEQ(S)] else ix in
Uit (it SEQ(S)Lil: SE-map
then U,e dom seoesia SEQ(S)(i)(n)
else if i = lastix’
then collect-preds(SEQ(S)[i], frontix’)
else collect-preds(SEQ(S)[i], [ ]))

preifix# [T
then tastix < len SEQ(S)
~if SEQ(S)[lastix]: SEStateOp
then pre-collect-preds(SEQ(S)[last ix], front ix)
- else frontix =[]
else true
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Assumptions and Beliefs

Assump :: index : Index
stmt : PredS
Assumptions are used for recording assumed predicates. They consist of an index which records
when an assumption was made, and the assumed statement itself. The following function extracts*
the statements from a set of Assump. ) )

statements : set of Assump — set of PredS

statements(as) & {stmt(a)|a e as}

A Belief, which is used to store a believed predicate, is similar to an Assump, except that it also
stores the description values in the current element of the SEStateOp. This is necessary since a
Belief represents a proof obligation that should later be discharged. To do so, one needs to know
the hypotheses that are allowed to be used in the proof, namely all the PredSs that are known to
hold at the time when the Belief is stated (cf. the specifications of the operations BELIEVE and
DISCHARGE in §6.1.2).
Belief :: index : Index
current : setof PredS
stmt : PredS
The function name statements is now overloaded to extract the statements from Belief's as well as

Assumps:
statements : set of Belief — set of PredS

statements(bs) A {stmt(b) |'b € bs}

Proven and provable rule statements

The following function checks whether a given RuleStmt is established by a given rule under a
given instantiation, using various functions given in Appendix C:

isProvenRuleStmt : RuleStmt X Rule-ref % Theory-ref X Instantiation
x Rulemap % Theorymap x ThMorphmap — B

isProvenRuleStm{(rs, rr, thr, i, rm, thin, thmm) &
let rule = rm(rr) in
let rs" = mk-RuleStmi(
{Instantiate(s,i)| s € SEQHYPS(STMT (rule))},
{Instantiate(a,i)| a € ORDHYPS(STMT(rule))},

Instantiate(CONCL(STMT (rule)), 1)) in
Establishes(rs’, rs)
A Is-Complete-Proof (PROOF (rule), thr, rm, thm, thmm)
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The operation PROVABLE checks whether a rule statement is provable in a theory and, if it
is, adds it (including its proof) to the theory as a new rule. This operation is to be provided by
FRIPSE.

PROVABLE (rs: RuleStmt, th: Theory-ref) r: { YES, DONTKNOW }
ext wr fripse : Store
postr = YES = rsis provable in th

A the rule with statement rs and a (complete) proof is
added to th in fripse

Of course there exists a trivial implementation of PROVABLE that always returns DONTKNOW.
Although this implementation would be correct with respect to the specification, obviously one
would hope for something more intelligent, probabiv implemented by proof tactics and/or using
decision procedures for decidable classes of problems. In different contexts, one should presum-
ably use different proof tactics and decision procedures, even though they implement the same
operation PROVABLE. An example of such a proof tactic is the algorithm transform given in
§5.1.

The state

The state of a symbolic execution system has the following structure:

SYMBEXSTATE :: S : SEStateOp
history : seq of SpecName
assume : set of Assump
beliefs : setof Belief
module : Theory-ref
wmodule : Theory-ref
wflag : B
fripse : Store

where

inv-SYMBEXSTATE(mk-SYMBEXSTATE(s, h, ass, b,m,wm,wf,f)) &
m e dom THS(f)
Awm e dom THS(f)
A inv-ThModule(THS(f )(m))
A inv-WThModule(THS(f)(wm))
Am e PARENTS(THS(f)(wm))
ATNSEQ(s) = lenh+ 1
Ang h C specs(m)
Ah=[] = wf =false
AINDEX(s) =1]
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t the theories module and wmodule should be the names (in fripse) of
the theory and weak theory of the same module. The length of SEQ(S) should be one more-than
the length of the history to allow for the initial starting state. All the SpecNames in the history
should be defined in the module. The wflag should initially be set to faise to show that so far no
weak symbolic execution has taken place. The SEStateOp should not be an element inside some

other SEStateOp. o

Copying the state

The following function copies an existing SYMBEXSTATE, up to a given clement in the execution

sequence.
copy-SYMBEXSTATE : SYMBEXSTATE X N; — SYMBEXSTATE

copy-SYMBEXSTATE(mk-S YMBEXSTATE(s, h, ass, bel,m,wm, wf,f), i) A

mk-SYMBEXSTATE(
mk-SEStateOp(SEQ(s)(1, ... , i), INDEX (),
KQ,...,i-1),
{a:Assump | a € ass A last index(a) < i},
{b: Belief | b € bel A lastindex(b) < i},

m,
wm,
wf,
N

Initial states

A SYMBEXSTATE is initial, if it satisfies

is-initial-SYMBEXSTATE : SYMBEXSTATE — B

is-initial-SYMBEXSTATE(mk-SYMBEXSTATE(s, h, ass, b,m,wm,wf,.f)) 2
lenSEQ(s) =1
Adomhd SEQ(s) = { }
nass={}
Ab={}
The invariant on SYMBEXSTATE implies, for an initial SYMBEXSTATE, that history = [] and

wflag = false. Different initial SYMBEXSTATEs at most differ in their module, wmodule and

fripse. Given any particular module, wmodule and fripse, the initial S YMBEXSTATE will be called

ARBITRARY.
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6.1.2 Operations

All the operations specified in the following should be accessible to the user. Their user interface
is discussed in §6.2.5.

Symbolic execution

Operation SYMB_EXECUTE symbolically executes a sequence of specifications. The pre-condition
checks that there is a rule or axiom that holds in module and has the shape

hyp-set t (sn-seq,S) — ([1,5")

for some hyp-set < collect-preds(S,[]) and some S": SEStateOp. The post-condition then applies
this transition to S.

SYMB_EXECUTE (sn-seq: seq of SpecName)

extwrS : SEStateOp
wr history : seq of SpecName
rd module : Theory-ref
rdwflag : B
rd fripse . Store
pre wflag = false
A Tng sn-seq  specs(module)
A 3S’: SEStateOp - Ahyp-set < collect-preds(S, [ 1) -
let s = mk-RuleStm«({ },
hyp-set,
(sn-seq,S) — ([1,5")) in
PROVABLE(rs, module) = YES
AlenSEQ(S") = len SEQ(S) + len sn-seq
post hyp-set < collect-preds(S,[ 1) -
let rs = mk-RuleStm«({ },
hyp-set,
(sn-seq, S} = ([1,S)) in
PROVABLE(rs, module) = YES

A history = history —~ sn-seq

In the special case of SYMB_EXECUTE, one should use the “tactic” transform introduced in §5.1
to implement the operation PROVABLE and find a proof of the RuleStmt.

The theory.of the operational semantics of a language is expected to be such that at any stage
in the symbolic execution, usually (but not necessarily) only one rule will be applicable. In this
case the tactic is fully automatic, no user interaction is required. Note however that this remark
only applies to symbolic execution itself, simplification is a separate step and should certainly be

_user-guided. Although the operation SYMB.EXECUTE allows the user to symbolically execute
a whole sequence of specifications, she will often only want to execute one at a time and then

execute the next specification on the result of the previous symbolic execution.
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The reason for the pre-condition wflag = false is that once weak symbolic execution has been
used on an SEStateOp, any further symbolic execution can only lead to a weak result and therefore
has to be dealt with using the operation W_SYMB_EXECUTE specified below.

Weak symbolic execution -

W_SYMB_EXECUTE behaves just like SYMB.EXECUTE, except that it uses the weak theory
wmodule instead of module, and sets the wflag to show that the result has been derived using
weak symbolic execution.

W_SYMB_EXECUTE (sn-seq: seq of SpecName)

extwrS : SEStateOp
wr history : seq of SpecName
rd wmodule : Theory-ref
wrwflag : B
rd fripse : Store
pre rng sn-seq < specs(wmodule)
A 3S’: SEStateOp - Ihyp-set < collect-preds(S,[1) -
let rs = mk-RuleStmt({ },
hyp-set,

(sn-seq,S) = ([1,57) in
PROVABLE(rs, wmodule) = YES

AlenSEQ(S") = len SEQ(S) + len sn-seq

post post-SYMB_EXECUTE(sn-seq, TS'_ history,

wmodule, fripse, wﬂag, S. history)
Awflag = true

Showing the results

SHOW shows the value of a program variable name after execution of a number of operations
given by the index ix.

SHOW (name: Name, ix: Index) ps-set: set of PredS
extrd § : SEStateOp
pre pre-get-element(S, ix)

A get-element(S, ix): SE-map

A name € dom get-element(S, ix)

post ps-set = get-element(S, ix)(name)

To see the value of a program variable in terms of the values after n operations (with n < m), run
SHOW and then SIMPLIFY the result.
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Simplification

SIMPLIFY simplifies an expression by applying a rule to it (but only displays the result and does
not change the state).

To specify SIMPLIFY, we need the auxiliary function simp-hypotheses. This function collects
all the PredS in an SEStateOp S up to an index ix, except for a given ps which is a current
description value of the given name n. This is exactly the set of hypotheses allowed to be used
for proving a simplification of ps. Note that this definition does not exclude the possibility that
ps itself is in the resulting set, since it may also be the description value of identifier nm # n. In
this case it is trivial to prove that ps <> true and ps may be deleted from the description value of
n (cf. page 74).

simp-hypotheses : SEStateOp x PredS X Name x Index — set of PredS

simp-hypotheses(S,ps,n,ix) &
let nmset = dom get-element(S, ix) — {n} in
collect-preds(S, previous(ix))
U Unme nmse: 8€1-€lement(S, ix)(nm)
U get-element(S, ix)(n) — {ps}

pre pre-get-element(S, ix)

A get-element(S, ix): SE-map

A n € dom get-element(S, ix)

Aps € get-element(S, ix)(n)

A pre-collect-preds(S, previous(ix))
Now SIMPLIFY is defined as below. The pre-condition checks that the SEStateOp contains ps
in the right place (as given by ix) and that ps can be simplified to some ps” by rule rr. The
post-condition then states that this rule should be applied to ps to get output ps’.

SIMPLIFY (ps: PredS, rr: Rule-ref, inst: Instantiation, ix: Index,
n: Name) ps’: PredS

extrd S : SEStateOp
rd module : Theory-ref
rdwflag . B

rd fripse : Store
pre wflag = false
A pre-simp-hypotheses(S, ps, n, ix)
A Jps”=PredsS - 3hyp-set C simp-hypotheses(S, ps, n, ix) -
-let rs = mk-RuleStmt({ }, hyp-set, ps < ps”) in
isProvenRuleStmi(rs, rr, module, inst, RULES(fripse), THS(fripse),
THMORPHS(fripse))

f

S UUU—— S
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post hyp-set simp—hypotheses(?, ps,n,ix) -
let rs = mk-RuleStmt({ }, hyp-set,ps < ps’) in
isProvenRuleStmt(rs, rr, module, inst, RULES(fripse), THS(fripse),
THMORPHS(fripse))

Weak simplification -

W _SIMPLIFY is specified just like SIMPLIFY, except that it uses the weak theory wmodule instead
of module, and the conclusion of the rule is an implication rather than an equivalence. Weak
simplification is not possible in the initial state when all the PredS that could be simplified have
been introduced by ASSUME or BELIEVE.

W_SIMPLIFY (ps: PredS, rr: Rule-ref, inst: Instantiation, ix: Index,
n: Name) ps’: PredS
extrd S : SEStateOp
rd wmodule : Theory-ref
rd fripse . Store
prelenS>2
A pre-simp-hypotheses(S, ps, n, ix)
A dps”: PredS - 3hyp-set C simp-hypotheses(S, ps, n, ix) -
let rs = mk-RuleStmt({ }, hyp-set,ps = ps”) in
isProvenRuleStmt(rs, rr, wmodule, inst, RULES(fripse), THS(fripse),
THMORPHS(fripse))

post Jhyp-set simp-hypatheses(‘f, ps, n,ix)
let rs = mk-RuleStmi({ }, hyp-set,ps = ps’) in
isProvenRuleStmi(rs, rr,wmodule, inst, RULES(fripse), THS(fripse),
THMORPHS(fripse))

Storing results of simplification

When an expression has been simplified, REMEMBER saves the simplified value in the state by
replacing the old ps;: PredS with the new psy: PredS. This is done using the auxiliary function
replace:

replace : PredS x PredS x SEStateOp x Index X Name — SEStateOp
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replace(psy, ps2,S,ix,n) &
mk-SEStateOp (
{i — if i = hdix
then if SEQ(S)[i]: SE-map

SEQS)iY(n)—{ps1} w{ps2:} ifnm=n
then {nrm 1 { SEQ(S)[i)(nm) otherwise

else replace(psy, ps2, SEQ(S){i], tlix, n)

else SEQ(S)[i]
lie {1,...,1enSEQ(S)}},
INDEX(S))

pre pre-get-element(S, ix)
A get-element(S, ix): SE-map
A ps) € get-element(S, ix)(n)
Then REMEMBER is specified as

REMEMBER (psi1,psa: PredS, rr: Rule-ref, inst: Instantiation, ix: Index,
name: Name)

extwr S : SEStateOp
rd module : Theory-ref
rdwflag : B

rd fripse : Store

pre pre-SIMPLIFY (ps, rr, inst, ix, n, S, module, wflag, fripse)
A post-SIMPLIFY(psy, rr, inst, ix, n, ps2, S, module, wflag, fripse)

post S = replace(ps, psa2, K ,ix, n)

Storing results of weak simplification

W_REMEMBER stores the results of W_SIMPLIFY. It is specified as

W_REMEMBER (psi,ps»: PredS, rr: Rule-ref, inst: Instantiation, ix: Index,

name: Name)

extwr S : SEStateOp
rd module : Theory-ref
wrwflag : B

rd fripse : Store
~ pre pre-W _SIMPLIFY (psy, rr,inst, ix,n,S, module, fripse)
A post-W _SIMPLIFY(psi, rr, inst, ix, n, ps2, S, module, fripse)

post § = replace(psy, ps2, ‘§ ix, n)
~rwflag = true
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Checking logical expressions

CHECK checks whether a given PredS ps is provable in the theory module, given all the descrip-
tion values in the current SEStateOp up to index ix. Of course, this will in general be undecidable,
therefore CHECK will answer either YES, it has found a proof, or NO, it has found a proof of ~ps,
or DONTKNOW, it has not found a proof and therefore does not know whether the expression is

provable or not.

CHECK (ps: PredS, ix: Index) r: { YES, NO, DONTKNOW}
extrd § : SEStateOp
rd module : Theory-ref
wr fripse . Store
post (r = YES = 3Jhyp-set < collect-preds(S, ix) -
PROVABLE(mk-RuleStmt({ }, hyp-set, ps), module) = YES)
A (r = NO = 3hyp-set < collect-preds(S, ix) -
PROVABLE(mk-RuleStmt({ }, hyp-set,—ps), module) = YES)

Assuming a logical expression

Define the auxiliary function

add-restriction : SEStateOp x PredS — SEStateOp

add-restriction(S,ps) &

if last SEQ(S): SE-map

then let new = {n — if n € domlastSEQ(S)
then last SEQ(S)(n) U {ps}
else {ps}
| n € mentions(ps)} in

front SEQ(S) ~ 1ast SEQ(S) T rnew
else front SEQ(S) nv add-restriciion(lastSEQ(S), ps)

pre mentions(ps) # { }
ASSUME adds a given PredS ps to assume, i.c. assumes that this expression is true. This is mainly
useful for simplifying expressions, in particular conditionals. In many cases, the user will first
want to make a copy of the starting state, and come back to it later to assume —ps in order to

cover all cases.
The pre-condition of ASSUME only checks that ps does actually use a variable, since assuming
a ground term would not make much sense.

ASSUME (ps: PredS)

extwr S : SEStateOp
wr assume : set of Assump

pre mentions(ps) # { }
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post assume = assume U {mk—Assump(current—index(lf), ps)}

AS = add—restriction(?, ps)

Believing a logical expression

BELIEVE also assumes that a given logical expression is true. The difference to ASSUME is that
this leads to a proof obligation that should later be discharged — the belief has to be justified. A
Belief thus plays the rdle of a lemma that is used before it is proven. One special case when this
can be particularly useful is in symbolic execution of incomplete specifications (cf. §7.4), where
one may use a property of some component that cannot be proven yet because the component
itself has not been specified yet.

Since it does make sense to believe a ground term, a new auxiliary function is needed to handle
this case. If ps is a ground term, then the user has to provide the Name that ps gets associated
with, since one can no longer automatically associatc ps with those n: Name that are mentioned
in ps.

add-restriction-g : SEStateOp X PredS X Name —> SEStateOp

add-restriction-g(S,ps,n) 2 '

if last SEQ(S): SE-map

then let new = {n — if n € domlast SEQ(S)
then last SEQ(S)(n) w {ps}

else {ps}} in
front SEQ(S) ~ lastSEQ(S) T new
else front SEQ(S) ~ add-restriction-g(lastSEQ(S), ps, n)

BELIEVE (ps: PredS, n: [Name])

extwr$S . SEStateOp
wr beliefs : set of Belief

pre mentions(ps) = { } = n # nil
post let elem = get-element(‘:f, current—index(?)) in
let current = e dom etem €lem(n) in
beliefs = m U {mk-Belief(current—index(L.ST), current,ps)}
A if mentions(ps) = { }
then S = add—restrictior;-g(?, ps,n)
else’ 5= add-restrictioﬁ(? ,DS)

—

Discharging BELIEVEd proof obligations

DISCHARGE discharges a BELIEVEd proof obligation. The pre-condition checks that there exists
a rule or axiom that holds in the theory, and whose statement expresses the assumption.




,,,,,,

CHAPTER 6. THE SYMBOLIC EXECUTION SYSTEM SYMBEX 95

DISCHARGE (b: Belief)

extwrS . SEStateOp N
rd module : Theory-ref
wr beliefs : set of Belief
rd fripse : Store -
pre let hyp-set’ = collect-preds(S, previous(index(b))) U current(b) in  —_
Jhyp-set < hyp-set’ - ’
let s = mk-RuleStmt({ }, hyp-set, stmt(b)) in
PROVABLE(rs, module)

post beliefs = beliefs—{b}

6.2 User interface

6.2.1 General philosophy

This section describes some ideas about the user interface (UI) of SYMBEX. The Ul is that part of «
system that is directly accessible to the user and with which the user interacts. Note that it is not, as
the name might suggest, an interface between the user and the system, but part of the system itself.
So far, this thesis has mainly concentrated on the functional aspects of SYMBEX. The following
now discusses some of the human factors involved. In particular, this includes the general layout
of the UI and some of the commands that should be available. As stressed before, a good Ul is
essential if SYMBEX is to be useful, since the main purpose of such a system is to help the user
convince herself of the correctness of a specification. Since every user is different, this implies
that SYMBEX will have to be highly interactive, giving the user a lot of control. Additionally, we
have to consider that we are working within the IPSE 2.5 framework, and a system for symbolic
execution has to integrate into this framework.

At a more shallow level, the UI of SYMBEX will be based on a windowing system, making
full use of the facilities provided such as windows, menus and and pointing facilities such as :
“mouse”.

6.2.2 The users

Most of the users of SYMBEX will be specifiers of some software system. They will usually be
computer experts, although they might not use symbolic execution very often; in general, they
should find it easy to understand the concepts behind using a symbolic execution system, bi.
will often find it difficult to remember syntactic details of the facilities provided. This group is
called “knowledgeable intermittent users” [Shn87, page 54]. They can be expected to have a good
though not necessarily expert knowledge of the specification language.

Originally, it was hoped to support a second group of users as well, namely the users of the
system being specified. This second group of users is very diverse, since it can contain all kinds o’
computer users. Usually, they will know little about the specification language, and probably closc

.
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to nothing about the symbolic execution system. Most of them will only want to use SYMBEX
to validate one particular specification, and therefore never be able to gain much experience with
it. However, during the development of SYMBEX it gradually became clear that the usefulness of
symbolic execution crucially depends on interactive simplification. Symbolic execution will often
not be able to provide useful results automatically, but provide a means of interactive exploration
of a specification. While it is still intended to make SYMBEX as easy to use as possible for such
inexperienced users, by giving them a lot of support such as suggesting default actions, it is no
longer expected that many such users will be able to use SYMBEX successfully for its intended
purpose, the validation of specifications. At least, they will usually require support by the specifier
to do so.

Since it is hoped that at least some users will become experts in using the symbolic execution
system, we usually provide commands both as menu choices and as short sequences of control
characters to serve both the novice or intermittent users and the experienced users.

6.2.3 Information presentation

A central aim for the presentation of information gained by symbolic execution is that it should
not look too similar to the original specification. Otherwise, if the user overlooked an error in the
specification, the same will probably happen again with the results of symbolic execution.

One possible way to do so would be to use a paraphraser as is done in GIST (cf. §2.1.2), so
as to make the results more readable. The GIST paraphraser translates formulae into sentences in
a language close to natural English. This has been done for both GIST-specifications and for the
results of symbolically executing them. The results of this seem quite impressive and genuinely
do make it easier to understand a specification or the results of symbolic execution. However, the
limited resources within the IPSE 2.5 project probably do not allow for building such a paraphraser,
not even a language-specific one.

We also have to make sure that the information provided to the user is split up into fairly small
chunks, which can be understood independently. This is partly achieved by associating parts of
the information (in form of sets of PredS) with individual identifiers, which allows the user t0
extract (using the show command) those parts of the information that relate directly to a certain
variable. A simple tactic that would help with the task of splitting up information would take any
conjunction ps; A ps; and split it into its components ps; and ps;.

Another important method for making expressions, in particular formulae, easier to under-
stand is to use a suitable unparsing algorithm (pretty printing). It is not intended to provide a
separate pretty printing algorithm for symbolic execution, but such an algorithm will be used if it

.i§ provided by other parts of IPSE 2.5.

If new information is added, for example by an assume-clause introducing a new description

value, then ™

e it is simplified using a tactic as previously determined by the user. (This includes the
- possibility that the tactic is empty and does not do any simplification at all.) Both unsim-
plified and simplified version of the description value are displayed (although display of
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the unsimplified version can be switched off) and the simplified version is automatically
remembered. =

if by the previous step a symbolic or actual value is derived for any variable v, i.e. a de-
scription value of the form v = ... with “...” not containing v, then v is replaced by the new
value in other description values. The result is first simplified, if possible, and then shown.
to the user. She then has the choice to remember this new result or to discard it.

In this case, any other description values ps of v that can be simplified to true are deleted
from the set of description values of v, since they no longer provide helpful information
about v. The condition that ps can be simplified to true (or, equivalently, that ps can be
derived from the other description values in the SEStareOp) is necessary to ensure that
the deletion does not change the denotation of the SEStateOp. In practice, a very simple
algorithm or tactic for checking this condition will probably be used, possibly one that only
checks whether ps does occur elsewhere in the SEStateOp.

6.2.4 Windows

With every SYMBEXSTATE we associate a symbolic execution window, and vice versa. The
information contained in such a symbolic execution window is defined as

SymbexWindow ::  NAME : SYMBEXSTATE-ref

RESULTS : seq of ExecutionStep
WFLAG : B

ASSUME - set of Assump
BELIEFS : setof Assump

where

inv-SymbexWindow(sw) &

let r = RESULTS(sw) in
Vi<lenr- SNAME(@li])=nil e3> i=1

ExecutionStep :: BUTTON : StepDution

SNAME : [SpecName]
RESULT : Resuit | ResultButton | seq of ExecutionStep

Result ::  INPUT : set of Name X Type

OUTPUT : set of Name x Type X set of PredS
READ : set of Name X Type
WRITE : set of Name x Type X set of PredS

where StepButton and ResultButton are disjoint sets of tokens. See page 102 for an example of a
SymbexWindow. The actions that are possible from a SymbexWindow will be described in §6.2.5.
The definition of ExecutionStep is recursive in order to model the recursion in the definition of
SEStateOp. A new seq of ExecutionStep is started by the function start-block as introduced in
§4.2.5, and ended by the function finish-block.
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This definition of SymbexWindow is somewhat simplified, in particular it ignores the fact that
the SYMBEXSTATE referred to by NAME already determines most of the other information in the
SymbexWindow, which should be included as an invariant. Since it is not intended to give a fully
formal specification of the Ul of SYMBEX, this simplification does not cause any problems.

In addition to SymbexWindow windows will be needed that provide access to other parts of
IPSE 2.5, in particular to FRIPSE and the LHS (cf. §1.4). Note however that in FRIPSE and the
LHS, the term “‘view” is used rather than window. These windows should allow one to browse
specifications, browse theories and prove theorems (e.g. for simplification), etc. No example of
such a “simplification window” is given in this thesis, since they are just instances of the general
FRIPSE prover windows currently under development by other members of the project.

Another type of window that might be added at a later stage is the “display window”. At any
stage during symbolic execution, the user would then be able to set up a window which displays
some information about the state as decided by the user, such as the current value of a variable x.
The user decides what information is displayed, and where within the window this is done. The
possible actions associated with display windows are adding information to the display, removing
information from the display, or moving information to a different place within the display. Note
that these windows are read-only, they provide a view of the underlying information; it would
not be possible to change the information itself within a display window, only the display of the
information can be changed.

6.2.5 Overview and commands

As described in §1.4, support for formal reasoning in IPSE 2.5 consists of three main parts, the
LHS which handles specifications and programs, the RHS which mainly consists of a theorem
proving tool, and the symbolic execution system. The LHS will mainly provide a convenient
starting point and browsing facilities for specifications and is therefore not absolutely necessary
for SYMBEX, while the RHS will be essential for symbolic execution.

When starting up SYMBEX, the user first has to select the specification module Mod in which
she wants to work. Implicitly, this also selects the relevant theories ThModule(Mod) etc. One of
the options a user has when selecting a particular specification in the module is to symbolically
execute it. The user is then asked to select, from a menu or list, a SYMBEXSTATE as a starting
point. This list of SYMBEXSTATESs includes the initial state ARBITRARY. The chosen module Mod
determines the fields module, wmodule and fripse of ARBITRARY.

Selecting a particular SYMBEXSTATE symbex from the list, one gets a menu with options (see
below for explanations)

”copy asks for a*value i < len SEQ(S)(symbex) and runs copy-SYMBEXSTATE to create a copy
of symbex, restricted to its first i elements. Then a window is started up on this new
SYMBEXSTATE.

select starts up a SymbexWindow on symbex.

Among other things, this new window contains, for every element of the SEStateOp sequence

e

T
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e a StepButton that provides a convenient way of accessing this particular element of the
sequence. ~

o the appropriate element of its associated history, the sequence of SpecNames that have been
executed so far. For the first element in the sequence, the SpecName is nil since this element
denotes the starting state of the symbolic execution. B

S

o the result of the symbolic execution, as described below. These may be collapsed- into
a ResultButton. If the appropriate element of the SEStateOp is an SEStateOp itself, for
example because the specification executed is a block or a loop, then the result is itself a
sequence of execution steps.

However, there are some cases when it would not be useful to display the results of symbolic
execution quite in the way described. First of all, it may contain a lot of duplication, since several
identifiers may have the same PredS as description value. Second, some of the description values
may be instantiations of a data type invariant (see the rule for VDM-operations in §4.2.6 for an
example) which the user may or may not want to see at each step. In both cases, this should
be handled by allowing the user to set a flag. If the first flag is set, any PredS is only shown
once, copies are hidden behind “...”. This allows the user to get hold of the duplicates again at
any time. If the second flag is set, then similarly any PredS that is appropriately marked in the
operational semantics is hidden. The marking could for example be done by distinguishing two
different kinds of PredsS in the definition of the operational semantics — those that are displayed
by default and those that are hidden by default if the flag is set. This second class would then
include the invariants.

It is important to note here that both these flags only concem the default display, the underlying
state is not affected and the user can always hide or “unhide” a PredsS as required.

Actions on an ExecutionStep

Selecting a particular element of the sequence (by “pushing its StepButton™) leads to a menu with
the options listed below. Except for copy, these options are only available if ExecutionStep has
as RESULT a Result or ResultButton rather than another seq of ExecutionStep. This is the case iff
the relevant element of SEQ of the SEStaieOp is a map rather than an SEStateOp itself.

copy runs copy-SYMBEXSTATE to creatc a new SYMBEXSTATE which is a copy of symbex,
restricted to its first elements up to the selected one. Then a window is started up on this
new SYMBEXSTATE.

symbolic execution this option runs operation SYMB.EXECUTE, thereby extending the sequence
SEStateOp. The user is first asked to choose a specification as argument if she has not done
so yet. The result is simplified according to a simplification tactic given by the user in
advance, and then displayed as described below. symbolic execution is not available if the
wflag in the SYMBEXSTATE has been set.

weak symbolic execution is like the above, but runs W.SYMB_EXECUTE and is available even
if the wflag has been set.
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assume runs operation ASSUME, asking for a PredS as input.

believe runs operation BELIEVE, asking for a PredS ps as input. If ps is a ground term, then a
Name n must also be provided and ps is stored as a description value of ».

show runs operation SHOW, asking for the name n of a variable and displaying the appropriate
value of this variable. With an additional argument ix: Index, show then runs a tactic that
tries to express the value of n in terms of the values of variables at stage ix in the execution
sequence.

check asks for a PredS ps as input and runs the operation CHECK on it. This is done by starting
a FRIPSE prover window and running a tactic in it that tries to prove ps from the description
values that are known at that stage. If the tactic is not successful in proving ps, the use:
may either try to do it “by hand” (possibly using other tactics) or stop, in which case the
result of running CHECK will be DONTKNOW,

If an option is selected that changes the information contained in the SEStateOp (i.e. symbolic
execution, weak symbolic execution, assume or believe), on any element of the sequence other
than the last one, a new SYMBEXSTATE (with a new SymbexWindow) is spawned (using the
function copy-SYMBEXSTATE) which is identical to the previous one up to the selected element.
The appropriate action is then performed on this new SYMBEXSTATE. If the selected clement is
the last one in the SEStateOp, this SEStateOp is updated or extended accordingly (in the same
window).

Displaying the results of symbolic execution

After a specification has been symbolically executed, those parts of the SEStateOp that have
changed should be displayed. Usually, this change consists of adding one or more elements to the
sequence of the SEStareQOp, although in theory a transition might also change those parts of the
SEStateOp already there.

First consider the case when the added (or changed) element is a map. In this case, the results
of symbolic execution of a specification consist of (cf. definition of Result in §6.2.4)

e input variable(s) ~—- name and type
¢ output variable(s) — name, type and description value
¢ read variable(s) — name and type

. & write variable(s) — name, type and description value

¢ Asan cxamplcr Consider the results of symbolically executing the operation OP; from Exam-

ple4.12: ™~

write x: Z

write y: Z

value of x: provided xo =2 0 thenx; =xp+ 1
value of y: provided xo = 0 then y? < xo
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Here x; was used to denote &([i+ 1], x) (similar for y). The difference of 1 is introduced to ensure
that the sequence of x; starts with the initial value xg instead of x;. ~

If the new element is not a map but an SEStateOp itself, then this should be expressed in a
rule of the form

—

(sn-seq’,lastSEQ(start-block(S))) — ([1,5") -
(sn-seq,S) — ([, add-to-SEStateOp(S, finish-block(S'Wy

For such rules (including, for example, Rules 4.2.7 for blocks and 4.2.12 for while-loops), the
symbolic execution done to discharge the hypothesis is displayed as an ExecutionStep whose
result is itself a sequence of ExecutionSteps, thus modelling the structure of the SEStateOp. The
functions start-block and finish-block were introduced to explicitly allow SYMBEX to do this even
if the hypothesis of the rule has not been (fully) discharged yet.

For other rules that have a transition as a hypothesis, SYMBEX first tries to discharge them
automatically, without user interaction. If this is possible then the symbolic execution needed
to do so is not itself displayed, although of course they will usually be used in the result and
displayed there. If it is not possible then a separate SymbexWindow will be opened to discharge
the hypothesis.

Actions on description values (Preds)

From the result of symbolic execution, one can now select a particular description value (or PredS).
The menu of available actions then contains

simplify runs the operation SIMPLIFY. The result can then be stored in the SEStateOp using
REMEMBER. If the wflag in the SYMBEXSTATE has been set, then this option is not
available .

weak simplify runs the operation W.SIMPLIFY. The result can then be stored in the SEStateOp
using W_.REMEMBER. ’

hide hides the selected PredS behind ...7.
unhide A hidden PredS can be made visible again at any time by “unhiding” the *...".

When selecting simplify or weak simplify, the user can decide either to select a rule from thoss
existing already in the simplification theory Th(L), or to build a new rule. The latter starts a new
FRIPSE window, ready to prove a rule of the form

hyp-set & ps < ps’
or, in the case of weak simplify,

hyp-sett ps = ps’

for some ps’: PredS and hyp-set of hypotheses as allowed by the specification of SIMPLIFY, in
the theory TA(L). The user would have to fill in ps’ and hyp-set herself, this cannot be done
automatically. Hopefully, the pattern matcher supplied by FRIPSE would then able to generate the
appropriate instantiation, otherwise it t0o has to be provided by the user.
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When a rule has been selected (possibly a newly created one), then this rule can be “applied”
to ps, i.e. ps can be replaced by ps’. If the user decides that the result is actually a simplification,
she can remember the result, i.e. store it in the SEStateOp. The command simplify itself only
displays the new result.

A number of tactics will be needed to do simplification. One of these, used by show, tries to
express the value of a variable x at stage { in terms of the values of variables at stage j for j < i. In
general, this would only work if the description values concemed really denote symbolic values,
i.e. the description values take the form x; = f(x;). However, whenever this tactic is applicable, it
will provide a useful way of understanding the specification.

6.2.6 Example

Assume the user selects a specification Specs, say from an LHS-browser. The user is now offered
a menu and selects symbolic execution. Prompted by a further menu, she selects to start in the
previously created Sz: SEStateOp. As a result, the following window appears and displays the
results of symbolically executing Spec, on S3:

Symbolic execution

Full

AYS

Assume ...

Believe ...

[o] L]
Specs D
Speca

Results of symbolic execution

As one can see, Sz had previously been built by symbolically executing Specs, starting originally
from ARBITRARY (but possibly running some assume or believe commands first). The results
of this first symbolic execution have been collapsed into a button. The results of symbolically
executing Spec; are visible, they take the form shown on page 100 for the example operation
OP;. The marker shows that the results have been derived using full symbolic execution,
the wflag is set to false.
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Selecting button |2 |in this window, the user is presented with a menu of options and selects
weak symbolic execution. A menu of possible specifications is displayed, from which she selects
Specy. As a result, the symbolic execution window becomes

Symbolic execution o
Weak
AY)
Assume ...
Believe ...

L[]
L]

Results of symbolic execution

Specy

Results of symbolic execution

One of the available options now would be to select a PredS within these results displayed and to
simplify it, building an appropriate rule in the theory Th(L) in the process.

6.2.7 Keeping and displaying information about sessions

Information about symbolic execution sessions takes two different forms, which have to be stored
and made accessible to the user in different ways:

* The results of symbolic execution itself are stored in the relevant SEStateOp (inside some
SYMBEXSTATE) and accessible there, for example using SHOW.

¢ In addition to that, the user will want to ‘commit’ some information about the results of
a session, without storing all available information. In particular, the user may become
convinced that a certain part of a specification is correct and needs no further checking.
In this case, information about earlier executions, as stored in SEStateOps, is no longer
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needed. Since ‘committed’ information relates directly to some part of the specification, it
should be stored and accessed as annotation to that part.

The two kinds of information described here are quite different in the sense that the first is dynamic
information about an execution itself, while the second is static information that was originally
derived from an execution, but associated more closely with the appropriate part of the specifi-
cation. It therefore seems useful to treat them separately and provide different ways of accessing
them.

As described above, the appropriate SymbexWindow is used in order to display and access
dynamic information. An altemative way, which may be added at a later stage, considers the
execution information as a tree and displays it as such. The nodes in this tree will be some form
of pointers to the relevant ExecutionSteps in a SymbexWindow. It should then be possible to access
an ExecutionStep and the information associated with it by pointing at the appropriate node in the
tree. There are two kinds of edges in this tree, representing the two ways of moving from one
state to another, namely executing an operation and introducing an assumption.

6.3 Design and implementation issues

Design and implementation of SYMBEX are not considered to be essential parts of this thesis and
are therefore only touched upon. Like FRIPSE, SYMBEX will be implemented in SMALLTALK-80.
The reason for this decision is that the SMALLTALK-80 programming environment already provides
many of the primitives needed. It scored heavily over its main rival ML because of its much better
user interface, both of the environment and of programs written in it. This makes it much easier
to provide a UI for SYMBEX that satisfies the requirements described above.

Integration with FRIPSE will be achieved by providing a translation mechanism for rules and
PredsS between FRIPSE and SYMBEX. For example, the rule with statement rs as constructed by
the operation SYMB_EXECUTE is then translated into a Rule in FRIPSE, and the tactic transformis
used in the theory referred to by mod to prove rs and instantiate the variables S’ and hyp-set. Once
this has been done, §’ is translated back into the language of SYMBEX and replaces the previous
SEStateOp S in SYMBEXSTATE.

If user intervention is required, as in the case of SIMPLIFY, the rule is treated in the same
way, except that the rule is proven with user help (in a separate window), but the result is then
translated back to SYMBEX in the same way.

6.4 Requirements on IPSE 2.5

The symbolic execution system described here will make use of a number of facilities provided
elsewhere in the project. This of course implies certain requirements on the rest of the project.
~Some of these are ‘must’-requirements, i.e. the SYMBEX system will not be able to work without
them. Others are ‘want’-requirements, which help to provide better support for symbolic exe-
cution, but are not absolutely necessary. In this section, we give a summary of these different
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requirements.
Since we want to use symbolic execution interactively, this implies that response times have
=

10 be short — if the user has to wait too long for a reply, the system will not be used.
It must be possible to do different things in different windows at the same time, €.g. browse 2
specification, symbolically execute it, and use the theorem proving tool. These windows should

be able to communicate easily, for example a result that has been shown using the theorem prover,

such as a simplification, can immediately be used in symbolic execution. Tt ust be possible to !

input an expression that already occurs on the screen by just pointing at it, using a pointing device
such as the “mouse”. Even though this requirement is not strictly necessary, symbolic execution
would become very awkward to use if it is not satisfied.

Tools that will be needed but are not expected to be provided as part of the symbolic execution

system, but rather as part of the general IPSE 2.5, include the following:

1. theorem proving tools, as discussed in §5.2. This could be a fairly simple proof editor, an
automatic theorem prover, or, most likely, something in between the two. It is essential that
this tool allows proofs with unknown or incompletely known goals.

2. support for writing and using tactics, including in particular the tactic transform. The tactic

language should include the hide and unhide commands for hiding a PredsS behind “...7,
and making it visible again.
3. tools for simplifying and rewriting expressions, as discussed in §5.2.

4. solver for simple (in-)equalities in N. Even though this might not be necessary for symbolic
execution, it would be very useful and support the simplifier considerably. As an example,
in the scenario on page 120, one wants t0 derive, from 1 < nA—2 < n for n: N, that n = 2.
The solver should be able to do this. It might be realised as a proof tactic, or possibly as a
separate tool (oracle) that would then be accessible to the prover and to SYMBEX.

In addition, such a solver could be used to detect inconsistent sets of restrictions, for example

when, as result of a case distinction, only one branch in a conditional statement Or expression

is possible.
5. pretty printer. This should help us to display expressions in a more readable fashion, and
thus make them easier to understand. This again is a “want”-requirement which would

make SYMBEX more useful, but is not absolutely necessary.

6. Finally, it would be useful to have suitable help facilities, including a tutorial for new

users of the symbolic execution system. If such facilities are provided, then they should be
integrated into a general help system for IPSE 2.5. However, at the current stage it is not
ded to include any help facilities into IPSE 2.5 or SYMBEX.

tary versions of the first two will be absolutely necessary for a symbolic execution

inten

At least rudimen

system.
The theorem proving tool mentioned in item 1. needs to provide support for proofs in several

different theories in parallel, in particular the theories ThModule(Mod) etc for symbolic execu-
tion itself, and Th(L) for simplification. Although such structuring of theories is not absolutely
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essential, it does make development of the necessary theory much easier (similar to modularity in
software development).

It seems easiest if the logic and theories used can be expressed in natural deduction style (as
in FRIPSE), in which case one needs to be able to express rules of the form % where
the conf are expressions denoting configurations. If the theorem proving tool does not support
natural deduction style then any other style that allows one to express an equivalent calculus of

configurations and transitions will be acceptable.
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Examples of the use of symbolic

execution

‘Il tell you what the problem is mate,’ said Majikthise, ‘demar-
cation, that's the problem!’

‘We demand,’ yelled Vroomfondel, ‘that demarcation may i
may not be the problem!’

‘You just let the machines get on with adding up,’, warned Ma-
jikthise, ‘and we'll take care of the eternal verities thank you very
much. You want to chack your legal position you do mate. Unadet
faw the Quest for Ultimate Truth is quite clearly the inalienable
prerogative of your working thinkers. Any bloody machine goes
and actually finds it and we're straight out of a job aren't we? |
mean what's the use of our sitting up half the night arguing that
there may or may not be a God if this machine only goes and
gives you his bleeding phone number the next morning?’

‘That's right,’ shouted Vroomfondel, ‘we demand rigidly defined
areas of doubt and uncertainty!’

Douglas Adams: The Hitchhiker’s Guide to the Galaxy

This chapter gives some examples that show the use of symbolic execution and SYMBEX.
It starts off with the example of a specification describing a bank, which shows some general
points about symbolic execution in SYMBEX. After that, some more specific issues are taken
up, such as iteration and incomplete specifications, and examples given that show how these can
be handled. The result expressions presented in the following are always those that arise after
some default simplification, even though, as described in §6.2.3, both the un-simplified and the
simplified expression should be displayed by SYMBEX.

107
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7.1 The dreaded bank example

The following example is based on [Jon86, §6.3].

7.1.1 Data structure

bank :: acm : map Acno to Acdata
odm : map Cno to Overdraft
where

inv-Bank(mk-Bank(acm, odm)) £
Vmk-Acdata(cno, bal) € g acm -
cno € domodm A bal 2 —odm(cno)

Acdata :: own : Cno
bal : Balance

Cno=N
Acno =N
Balance =17

Overdraft =N

7.1.2 Operations

Introduce a new customer:

NEWC (od: Overdraft) r:Cno
ext wr odm : map Cno to Overdraft

post r ¢ dom odm A odm = odm t {r — od}
Remove an existing customer:

REMC (cno:Cno) r: map Acno to Balance
- extwracm : map Acno to Acdata
rd odm "+ map Cno to Overdraft
pre cno & dom odm
post r = {acno — ba | acm(acno) = mk-Acdata(cno, ba)}
Aacm =domr< acm
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Open a new account for an existing customer:

NEWAC (cno:Cno) r: Acno

ext rd odm . map Cno to Overdraft
wr acm : map Acno to Acdata -

pre cno € domodm -

post r ¢ domacm A acm=acm t {r — mk-Acdata(cno, 0)}
Close an existing account:

CLAC (acno: Acno) r: Balance
ext wracm : map Acno to Acdata
pre acno € domacm

post dom acm = dom acm — {acno} A r = bal(@cm(acno))
Get information about a customer’s account(s):

ACINF (cno:Cno) r: map Acno to Balance
ext rd acm : map Acno to Acdata

post r = {acno — bal(acm(acno)) |
acno € dom acm A own(acm{(acno)) = cno}

7.1.3 Symbolically executing the specification

In our example, the user starts off by introducing a new customer, and the system answers by giving
some information about the specification of the operation called. For any n: Name, ix: Index, the
value &(ix, n) is written as ny, where i¥’ is defined by ix'[i] = ix[i]]— 1 fori=1, ..., lenix. ix is
used instead of ix to ensure that the initial value of » is denoted by ng rather than »;. Furthermore, °
in ny the brackets around the sequence ix are omitted, so that the overdraft in the example is
denoted by od rather than odpy;.
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Symbolic execution

Full

Assume { }
Believe { }

[o] []
NEWC

input: ody: Overdraft

output: ri:Cno

write: odm: map Cno to Overdraft
value of r: r1 & dom odmy

value of odm: odmy = odmg 1 {r, — od}

Here and in the following it is assumed that duplicate description values and the invariant are
hidden behind “..."”, as described in §6.2.5.

Next, the user might introduce another new customer, and ask (using show) for the current
value of odm in terms of the original value. This is found using the tactic described on page 102.

NEWC

input: ody: Overdraft

output: r2:Cno

write: odm: map Cno to Overdraft
value of r: r, ¢ domodmy

value of odm: odmy = odmy T {r2 — oda}

odmy = (odmg T {r1 = od1}) 1 {r2 — odz}

If the user had just asked for show(odm), the system would have displayed the description value
Of the current value of odm.

It would be nice if the two map overwrites in odm; could be simplified into one, but in order
to do this the system would have to deduce that r; # ra. The user will probably have to prove this
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manually, using the theorem prover. In this case, the system will hopefully be able to generate
the proof obligation 7y # 2 automatically. Whether this is possible will however mainly depgnd
on the strength of the simplification tactics used.

Since this new description of odm;, seems to be clearer than expressing it in terms of odmy,
the user would now simplify the value of odn accordingly. This is done by selecting the value of
odm, issuing the command simplify, and selecting the relevant simplification tactic or rule from
a menu. The command remember then ensures that in future, when asking for the value of odrm;
(be it explicitly or implicitly), the user would always gets this new description as an answer:

odmy = odmo T {r1 — ody,ra — oda}

The user might now decide to create a new account. Since accounts should only be opened for
customers who have got a customer number, SYMBEX now has to handle a pre-condition:

NEWAC

input: cno3: Cno

output: r3: Acno

read: odm: map Cno to Overdraft
write: acm: map Acno to Acdata
value of 7: provided cno3 € dom odmy

then r3 g domacma,
acmy = acmy 1 {r3 — mk-Acdata(cnos, 0)}

value of acm:

Let the user now assume that crnosz ¢ dom odmy. This assumption violates the pre-condition
of the third operation executed, and the system therefore issues a warning. Since the assumption
was simply the negation of the pre-condition, SYMBEX should be able to notice and deduce this
automatically. In more complicated cascs, the user will have to prove such statements manually
using the theorem prover.

Since the pre-condition of the operation NEWAC is not satisfied, the specification does not
restrict the results of NEWAC at all. Therefore all variables now have the value true.
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Symbolic execution
Full
Bank
Assume {cnos ¢ dom odm; (index 3)}
Believe { }
nEwe ]
nawC ]
NEWAC
input: cnos: Cno
output: r3:Acno -
read: odm: map Cno to Overdraft
write: acm: map Acno to Acdata
value of r: true
value of acm: true
WARNING: pre-condition of operation 3 (NEWAC) does not hold

The ’index 3’ denotes that the assumption has been introduced on the third element of the se-
quence. Instead of continuing execution on this state, the user might now decide to go back to the
previous state, before the assumption, by pointing at the appropriate button | 2 | and then selecting
copy, and then execute NEWAC 1o recreate the new account. Now let the user execute NEWAC
once more and create a second account. This time, the user might give the input 12345, which is
interpreted as assume cnog = 12345:
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NEWAC(12345)

input: 12345:Cno

output: rs: Acno =
read: odm: map Cno to Overdraft =
write: acm: map Acno to Acdata

value of r: provided 12345 € dom odms3

then rq & domacms,
acmg = acms T {ra— mk-Acdata(12345,0)}

value of acm:

The user might again decide to simplify expressions by making some assumptions, and assume
that the pre-conditions of operations 3 and 4 are true. Actually, the assumption made below says
slightly more than that, and the system has to derive the pre-condition itself. It does so (hopefully
but not necessarily automatically), and then is able to conclude that all formulas above which
depended on the pre-conditions actually do bold. The user would then ask for the current value
of acm to be shown in terms of the original value. As before, the simplification of two map
overwrites into one might have to be done by the user rather than automatically.

In the following, the results will be given as text, without showing the window in which it

appears.

assume (cnos € dom odmy A 12345 € dom odmo)
12345 € dom odms
r3 ¢ domacni
acms = acmy ¥ {r3 v mk-Acdata(cnos, 0)}
r4 ¢ domacms
acma = acms t {ra — mk-Acdata(12345,0)}

show(acm, ...)
acma = acmg t {r3 > mk-Acdata(cnos, 0),ra mk-Acdata(12345,0)}

Next, the user would execute the operation ACINF, to find out what information is stored
about the accounts of a customer. Since the answer given is not immediately useful, the user
would ask for rs in the answer to be rephrased in terms of acmo instead of acms, using simplify.

The result can then be simplified using case distinctions.

ACINF

input cnos: Cno
output rs: map Acno 0 Balance
read acm: map Acno to Acdata
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rs = {acno — bal(acms(acno)) |
acno € domacms A own{acms(acno)) = cnos}
simplify ...
if cnos = cnos A cnos = 12345 then
rs = {acno — bal(acmo(acno)) |
acno € dom acmg A own(acmo(acno)) = cnos}
t{rs— 0}
t{rs+ 0}
if cnos # cnos A cnos = 12345 then
rs = {acno — bal(acmo(acno)) |
acno € dom acmg A own{acmo(acno)) = cnos}
t{ra— 0}
if cnos = cnos A cnos # 12345 then
rs = {acno — bal(acmo(acno)) |
acno € dom acmg A own{acmo(acno)) = cnos}
{r3— 0}
if cnos # cnos A cnos # 12345 then
rs = {acno — bal(acmo(acno)) |
acno € domacmg A own(acmo(acno)) = cnos}
remember ...

Such case distinctions might multiply very fast; in that case the user would have to introduce
assumptions and only handle a small number of cases at a time.

To continue the example, let the user want to check what happens if a customer is removed.
The system again has to distinguish several cases, depending on whether or not this customer was
introduced by one of the previous operations, or was in the original data structure, or does not

exist at all.

E REMC

input cnos: Cno

output re: map Acno to Balance

write acm: map Acno to Acdata

read odm: map Cno to Overdraft

provided cnog € dom odms

then r¢ = {acno — ba| acms(acno) = mk-Acdata(cnoe, ba)},
acmg = domre < acms

By letting cnog = ra, the user could now check what happens if the customer introduced in op-
eration 2 is-removed again, to make sure that the two operations cancel each other out. Since
cnog = ry implies cnog € dom odms, the precondition of operation 6, REMC, is satisfied. There-
fore the system again displays the formulas that describe the postcondition of operation 6, this
~ time without prefixing them with ‘provided s
Our example user now checks whether odmg = odmy, since the customers and their overdraft
limits should be the same as they were before customer r was introduced. It is hoped that such
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checks can be done automatically when using check (this command may therefore take fairly long
to execute), but it is possible that the system will rely on help from the user for these deductiens.
As in many examples before, this depends on the strength of the tactics (and theories) used. It
turns out that the domains of the two are not equal, the two operations therefore do not cancel

—

each other out: -

assume cnoeg =12 .
r¢ = {acno — ba| acms(acno) = mk-Acdata(rz, ba)}
acmg = domrg< acms

check odmg = odmy

No

In the separate prover window, the proof of odmg # odmy is displayed:

odmg = odms
= odmy
= odmy t {r,+ oda}
# odm

Closer investigation shows that REMC does not actually remove a customer, it only removes the
customer’s accounts. This can be corrected as follows:

REMC (cno: Cno) r: map Acno to Balance
extwr acm : map Acno to Acdata
wr odm : map Cno to Overdraft

pre cno € dom odm

post dom odm = dom odm—{cno}
~r = {acno — ba | acm(acno) = mk-Acdata(cno, ba)}
Aacm = domr< acm

Ideally, one would now like to have some kind of version control tool that goes through all the
SEStateOps in the current Module and updates them with the new definition of REMC. Those parts
of the SEStateOp that are not affected by the change would remain unchanged, while those parts

that are affected would be changed accordingly, or at least marked as ‘unsafe’. Such a version
control tool may be added later, but is not considered to be part of the main body of SYMBEX.

For the time being, changes to the SES tateOp because of changes to the underlying specification

have to be made by hand.
The proof of odms = odmy goes through, i.e. the two operations now cancel each other out

(remember 7, ¢ dom odmy):

dom odmg = dom odms — {cnoe}
= dom odmy — {r2}
= (dom odmy L {r2}) — {r2}
= dom odm
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Even though in theory, SYMBEX might now have noticed odmg = odm; without help from the user,
this seems to be asking too much, since here simple rewriting is not sufficient, one needs proper
formal reasoning support. It may even be too difficult to prove this statement automatically once
the user has stated it, in this case another window should pop up giving access to the theorem
prover.

7.2 Invariants and pre-conditions

Invariants

Before discussing in more detail what happens with invariants when further information is added,
one has to distinguish the different rles that invariants can play in a specification language.
Invariants can be characterised as predicates defining subtypes, they restrict an abstract data type
to those elements that satisfy the invariant. One possibility for treating invariants is to demand
that for every specification of an operation acting on a state with an invariant, one has to prove
that the resulting state again satisfies this invariant and therefore is of the correct type. With
this interpretation, invariants play a similar rle to that of assertions in a program. They help to
understand and reason about the specification by introducing some redundancy, by asserting that
the underlying data structure or state should have certain properties, but they do not guarantee this
in themselves. This view of invariants is taken in INA JO (cf. page 16), and in VDM as described
in [Jon80]. However, this interpretation has the disadvantage that, for many operations, one has
to explicitly add a number of statements to the post-condition solely to ensure that the invariant is
satisfied. In many cases, these additional statements are more or less a repetition of the invariant
itself. The newer version of VDM as described in [Jon86] therefore takes the view that an invariant
is part of the type definition. Then by providing an operation with the appropriate signature, one
automatically implies that only resulting states satisfying the invariant are legal, because only they
are of the correct type. Under this interpretation it therefore is not necessary to explicitly state
this in the specification of the operation. Instead of having to prove that the resulting state of an
operation always satisfies the invariant, it is then only necessary to prove implementability, i.e.
the operation is consistent with the invariant, there exists a legal resulting state of the operation.
How should invariants be treated in symbolic execution? Under the second interpretation,
where invariants in themselves guarantee certain properties, they should be regarded as part of
the description values of all the variables mentioned in the invariant. This was for example done
in the transition for VDM-operations in §4.2.6.
. Under the first interpretation, there are two alternatives: since invariants introduce redundancy,
“one might just-ignore them, they do not strictly speaking offer any additional information that
cannot be deduced from the rest of the specification. However, it would usually still be be useful
to use the explicit information provided by them, for example for checking a PredS, rather than
leave it in an implicit form. Therefore, one might instead decide to treat invariants as description
Values, just as described above. It is probably best to provide both alternatives, by generally
treating invariants as part of the description values, but giving the user the choice to leave them
out. In this thesis invariants are treated as part of the description values.
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If invariants, especially large ones, always get displayed, this may easily cause a flood of use-
less information and not really help in understanding the specification. On the other hand, ifthis
is not done then there is a danger that invariants are ignored in symbolic execution. This could
undermine the purpose of symbolic execution, since invariants probably cause many of the un-
expected interactions between various parts of the specification. SYMBEX therefore compromises
between the two by displaying all the invariants, but allowing the user to hide them. Hiding can>
be done either “by hand” by selecting the hide command, or by using it in a tactic. ’

So far, the discussion has ignored the problem of invariants on the whole state. If a specifica-
tion only accesses individual components of the state, it is not obvious where in the operational
semantics of the specification the invariant on the state should be mentioned. Two possibilities

are

e add the invariant on the state to the description values of (at least one of) the variables
denoting fields of the state that are accessed by the operation.

e add a new “dummy” variable that has as its description value the invariant on the state.

The choice between these two alternatives is made when defining the operational semantics of the
language used, it does not need to be made in general beforehand.

Pre-conditions

How should pre-conditions be handled by SYMBEX? Pre-conditions are predicates over the state.
Again, there are different ways of interpreting a pre-condition. In VDM, if an operation is called
in a state that does not satisfy the pre-condition, then the specification does not restrict the output
of the operation. All the variables in the state will therefore take arbitrary values after execution
of the operation, or execution may not terminate at all. A slight variation of this would be to say
that only those variables that a specification has got write-access to can take an arbitrary value _
(but again allowing non-termination). A third possibility is to consider it as an error if the pre-
condition is not satisfied, and to demand that in this case, an appropriate erTor message is given.
This thesis will not discuss the advantages and disadvantages of the different interpretations, but
just show how they can be handled in symbolic execution.

Under any of these interpretations, a pre-condition can be considered as a special kind of
conditional construct. Under the interpretation used in VDM, a pre-condition is handled by in-
troducing constructs of the form ‘provided pre-condition then post-condition’. If at a later stage
more information about the variables in a pre-condition is available, for example after an assume
command, then the relevant description value containing the provided-expression is simplified if
possible. Since pre-conditions play a special rdle in specification, a waming should be given to
the user if a pre-condition turns out to be false. This was the reason for introducing provided-then
rather than using, for example, an if-then-else expression.

As was said before, the simplifier should automatically be invoked when new information is
added, and try to simplify all pre-conditions and invariants that share some variables with the new
information. Of course, the simplifier should only try such simplifications that actually use the
new information, since only such simplifications can provide any new insights.
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The effort involved probably will not be as much as one might expect since both pre-conditions
and invariants usually relate to only one state, and therefore only to the variables of that state.

7.3 Iteration and recursion

Handling of recursion and iteration is a central part of a symbolic execution system, since in gen-
eral the various forms of recursion and iteration are, besides implicit definitions, the most difficult
constructs in a specification to fully understand. This means that it is particularly important for
symbolic execution to provide facilities for handling them.

In general, a recursive function definition, say fu(n) 2 if n = 0 then g(n) else h(n,fn(n— 1)),
cannot be tumed into an explicit definition. Therefore, the value of fn(n), where n does not have
an actual value, must be expressed as a description value consisting of the definition of fr, since
expressing it as a symbolic or actual value is not possible. Even if n does have an actual value,
it is not necessarily useful to evaluate fn(n) in symbolic execution, because the information about
the computation would then be lost. In some special cases, however, it is both possible and useful
to be more explicit than giving description values. Some examples of such cases are given below.
Even if it is not possible, the facilities described below should make it easier to understand the
effect of a recursive definition.

Consider the function fact: N — N defined recursively by faci(0) = 1,fact(n+ 1) = (n+ 1) X
Jact(n), and the function f given by the program fragment

yi:=1,1

read n

whilei<n
doyi:=yxi,i+1od
writey

Now consider what happens if this program fragment or procedure is symbolically executed,
starting in some S: SEStateOp. The assignment at the beginning is easy to deal with, it leads
to the description values i; = 1 and y; = 1; read n just introduces the variable n» with empty
description value. Next, the while-statement is handled according to the rules given in §4.2.8.
Starting with the configuration (while i<ndo ...,S) for the new S: SEStateOp, the appropriate
Rule 4.2.12 has as hypothesis the transition

(WHILE @ DO sn OD, lastSEQ(start-block(S))) — {[1,5") (7.1)

-for some SEStateOp S’. Note that the same symbol S was used for the new SEStateOp after
symbolically executing the assignment and the read statement as for the starting state, in order
to emphasize\the fact that the old one has been transformed or extended into the new one. No
genuinely new SEStateOp has been created (cf. page 100). However, to prevent confusion the
following discussion will denote the version of S after i steps as S;. Similar for S; for any /ndex
?x. Six is therefore the state that defines the values of nm;, for nm: Name.
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On the level of the operational semantics, this new SEStateOp introduced above then become
an element in the sequence of the old one. On the Ul level, this results in an ExecutionStep whose
RESULT itself consists of a sequence of ExecutionSteps. At first, this sequence has length *
where the first element is given as part of the definition of start-block. Assume for this examni-
that the user started in the initial state ARBITRARY. The SymbexWindow then takes the form

Symbolic execution

Full

Assume { }
Believe { }

[o] ] |
yii=1,1

write: i:N,y:N
valueof i: i1 =1
valueofy: y1=1

read n

read: n

while i<n do ...
[0]

valueof i: ip3 =11
valueof y: yo3 =n
valueof n: ng3 =n2

This is without applying the trivial simplification i3 = 1, yo3 = 1. It would be up to the user to
decide whether such simplifications should be done immediately and automatically or not.
The “inner” box here represents the SEStateOp

So3” £ 1astSEQ(So;3)
= lastSEQ(start-block(S1))
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To find the right S’ to discharge the hypothesis (7.1) of the above transition, one needs to evaluate
the configuration

(WHILE i < n DO y,i:=yxi,i+10D, So3')

which by Rule 4.2.13 transforms into

(if i<n then cons(y,i:=yxi,i+1, WHILE ..)),

else {],
So3") (7.2)

Now Rule 4.2.11 applies, which leads to the hypotheses

io3 <no3z F {cons(y,i:=yxi,i+ 1, WHILE...), So3’) (71.3)
— ([ 1, mk-SEStateOp(SEQ(So3") — e-seq1,INDEX(Sp3")))

and
—ig3 < no3 - {[1,803") — ([1, mk-SEStateOp(SEQ(S03") —~ e-seqz, INDEX(So3"))) (7.4)
Then trivially e-seqy = [ ], while (7.3) implies

hde-seq; = {y — {¥13 =Yo3 Xio3},i+— {i13 =io3+1},n+— {n13 = no3}}

or, after applying some easy simplification
hde-seqi = {y = {y13=1}im {13=2},n— {m3=n}} (75)
Then S 3’ = add-to-SEStateOp(So3’, hd e-seqy) and hypothesis (7.3) tums into

l<ngs b (WHILE ...,So3) (7.6)
< ([ ], mk-SEStateOp(SEQ(S15") ~ tle-seq1, INDEX(S13")))

with tle-seq still unknown. Doing another iteration one gets tle-seqy = [] in the case 1 <
no3 A -2 < nis3 (i.C. np = 2), and

ny>2F hdtle-seqy = {y — {y23=2},i— {iz3=3},n— {m3=nm}} 7.7
with the new hypothesis

ny>2+ (WHILE ..., S03") (7.8)
- < ([ 1, mk-SEStateOp(SEQ(S2.3") — tltle-seq1, INDEX(S23")))

and so on. REstricting the number of iterations to at most 2 is equivalent to issuing the command’

assume —ip3 < ng3 Vv =iz <Nz VvV —iz3 <m3

T

1There are several essentially equivalent possibilities for restricting the number of executions of the loop. Besides
giving appropriate values to loop variables, as we have done here, one might explicitly putan upper limit on the number
of iterations of the loop, or, as is done in EFFIGY (see §2.1.2), restrict the number of steps in any path to be taken.
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or, equivalently,
assume n; <3
Doing this the user gets
(if i<nthen WHILE ... else [],523") — ([1.523") -

(using one of the simplification rules mentioned at the end of §4.2.7). Merging the results now as ’
described in Rules 4.2.11 and 4.2.12 results (after some easy simplification) in the window given
in Figure 7.1.

The user might not see yet what is going to happen for other values and decide to try something
else. One possibility would be to give a limit on the number of iterations of the loop/number of
recursions, say 5. In this case, the result is

ifn<1thenf(n)=1

elseifn<2thenf(n)=1x1=1

elseifn<3thenf(n)=1x1x2=2

glseifn<4dthenf(n)=1x1x2x3=6

elseifn<S5thenf(n)=1x1x2x3x4=24

elseif n <6 thenf(n) = 1x1x2x3x4x5=120

else Nontermination
y=1xlx2x3x4x5=120;i=1+1+1+1+1=5

When executing a loop such as this, it seems best to display the unsimplified as well as the sim-
plified result, since the unsimplified form might make it easier to understand the general structure

of these results.
Now consider the recursive function fact. Repeated unfolding of its definition, say 5 times,

results in

if n=0 then fact(n) = 1

else if n =1 then fact(n) = 1 x1=1

elseif n=2 then fact(n) =2x 1x1=2

elseif n=3 then fact(n) =3x2x1x1=6

else if n = 4 then fact{n) = 4x3x2x1x1=24

elseif n =5 then fact{n) = 5x4x3xX2x1x1= 120

else fact(n) = nx(n—1)><(n~2)x(n-—3)><(n—4)xfact(n—5)

Such unfolding can either be done by hand, or using an easy simplification tactic.
The user might now guess that
f(n) = if n=0 then 1 else fact(n— 1)

This guess can then be checked. If SYMBEX is not able to prove this automatically, the user may
instead do so by going into a theorem proving window and proving it there as a theorem. In

 this case, the user would have to choose the set hyp-set of hypotheses out of those PredsS already

known, as given by collect-preds(S,[]) in the specification of CHECK. Whenever the user now
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Symbolic execution

Assume { }
Believe { }

yi:=1,1

read n

while i<n do ...

(] o] [=] [2]

OO

[o]

valueof i: ip3=1
valueofy: yp3 =1
valueof n: np3 =ny

y,ii=yxii+1

valueof i: ifl <mthenijz=2elseijz=1
valueofy: yi3=1
valueof n: nmj3=ny

yii=yxi,i+1

valucof i: if2<nythenizz=3

elseifl <mythenizz=2elseirz=1
valueofy: if2<nytheny,3=2elsey;3=1
valueof n: nmy3=ny

Full

Figure 7.1: Window resulting from symbolic execution

122




b oW [ T

[

[ —1

| S

CHAPTER 7. EXAMPLES OF THE USE OF SYMBOLIC EXECUTION 123

comes across this procedure definition, it is possible to substitute f(n) by if n = 0 then 1 else
fact(n—1). N

Another way of dealing with loops is to include a suitable while-constructor in the language
of PredS. Using this, one could move the while-construct of the specification language into the
description language. Although this in itself would not help understanding of-the specification,
it would allow the user to move on to further exploration without making any assumptions about.
the number of iterations of the loop, and use a symbol for the result of symbolically executing the
loop.
If one is content with weak symbolic execution then one can prove theorems about the loop,
e.g. prove (presumably by induction) that some ps: PredS holds after any number of iterations
of the loop. Then ps can be used as a description value describing the result of symbolically
executing the loop. Since in general, ps will not be a complete description of the result, this only
Jeads to weak symbolic execution. A similar approach is possible for recursive definitions.

7.4 Incomplete specifications

If a specification is developed in a top-down manner, then it may be possible to execute it sym-
bolically even if it is unfinished. This is the case when the top-level of an operation or function
has been specified, but operations or functions called from there have not. In this case, symbolic
execution will only retum the name of these operations or functions. Of course, these names
cannot then be unfolded into their definitions, but this might nevertheless be a helpful tool for
checking the overall structure of a specification before filling in the details.

A problem that arises is that a number of simplifications cannot be made, since they may rely

on lower-level information. For example, introducing a new element to a data structure and then

removing it again should leave the structure in its initial state. However, a system for symbolic

execution cannot notice that remove(x, add(x, ds)) = ds, unless there is more information available,

about add and remove. Instead, the uset might state this as an assumption, which can then be used.
The system will store this assumption as a proof obligation, which the user should later discharge

when add and remove have been specificd.
As an example of symbolic execution of an incomplete specification consider the following:

SORT (l:seq of N) r: seq of N
post is-permutation(l, r) A is-sorted(r)

This might be part of a larger specification, and at an early stage the user might be quite content
1o check the interactions between this operation and others at this fairly high level, without defining

the predicates is-permutation and is-sorted. At some stage in this process, one might need to know

that for the result r of SORT, the sum of the first two elements is less than or equal to the sum
of the last two. The user may now believe this until some later stage when is-sorted is defined.
Then the Belief can be proved, which at the same time constitutes a check whether the definition

of is-sorted matches the intention of the user.
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At some later stage, the user then has to define is-permutation as well, but by now can be
reasonably sure that it is really needed and the high-level specification was correct. Additionally,
this process may have generated some requirements on the specification of is-permutation, namely
the proof obligations mentioned above. This should make it easier to write a correct lower-level
specification.

7.5 Dealing with large specifications

Symbolic execution should support understanding of large specifications. Obviously, the effec-
tiveness of this help depends a lot on the specification itself; if the specification is badly structured,
even symbolic execution cannot make it easy to understand.

Symbolic execution of a large specification is probably most effective if the specification is
built top-down, with high-level operations being specified in terms of lower-level operations. In
this case, symbolic execution can be used in two different ways to validate two different aspects
of a specification. First, the user can symbolically execute high-level specifications without first
having specified the lower-level ones, or just without unfolding these definitions. This helps her to
validate the overall structure of a large specification and is done in a similar way to the validation
of incomplete specifications discussed above. Indeed, it would probably often be done while the
specification is still incomplete.

However, if the specification is complete, then there will usually be no need for introducing
believed proof obligations in the same way as there is for incomplete specifications. Nevertheless,
a user might decide to use them anyway since they give her more freedom about the order of doing
things by allowing her to use a lemma before proving it.

Once the overall structure of a specification has been validated in this way, its individual
components and their interactions can then be validated in a similar way to smaller specifications.
Of course, this gets much easier if the specification is well modularised, but even if this is not
the case then symbolic execution makes it easier for the user to detect the interactions between
different parts of the specification.

In the SORT-example discussed in §7.4, validation would thus involve first symbolically ex-
ecuting the overall structure of SORT as given in the post-condition, and then dealing with its
components is-permutation and is-sorted (which, in this case, do not have any interaction be-
tween them).

-7.6 Implicit specifications

One of the iwo main advances of the work described in this thesis over previous work on symbolic
execution is the support for symbolic execution of implicit specifications. This led to the intro-
duction of description values; if the value of a variable is only defined implicitly, then instead of
~actual or symbolic values a formula is associated with this variable. The whole system SYMBEX
is thus geared towards supporting implicit specifications. In our model there is no essential differ-
ence between the treatments of implicit and explicit specifications. Explicit specifications often
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make certain tasks, in particular simplification, easier to do, but in symbolic execution itself the

two are not distinguished.

A standard example of a simple implicit specification is the specification of SORT in §7.4.

Once is-permutation and is-sorted have been specified as well, i.e. the specification is complete,
ofic can execute it on a more detailed level. One possibility that seems particularly useful for
de both input and output for an operation, in this case SORT. The ,

implicit specifications is to provi
1d then check whether the values provided satisfy the specifica-

symbolic execution system shou

tion.
Assume the user provides as input value the list [x1,x2,

x,). The system then has to check that

x3,%x4] and as output value the list

[x4,x3,%1, %5,

is-permutation([x1, X2, %3, X4}, [Xa, X3, X1, X5 x2])

and
is-sorted([xs, x3,X1,%s,%2])
false or undetermined depending on the ordering given, the

hold. While the latter might be true,
as such, either automatically using the simplifier

former is definitely false and should be identified

or with help from the user.

Next, the user starts a new execution and provides input
[x3, x1, X4, X2}, Now is-permutation(...) should simplify to true, and the user makes some assump-
tions about the ordering. Assuming x4 > X2 should make is-sorted(...) simplify to false, while

assuming x4 < xz should return the information that in order to simplify is-sorted(.. .) to true and
<x; £ x4.

thus show that the specification is satisfied, it is necessary (and sufficient) that x3

value [x1, X2, X3, X4}, and output value
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Summary and conclusions

Habe nun, ach! Philosophie,

Juristerei und Medizin

Und leider auch Theologie

Durchaus studiert, mit heiBem Bemilhn,
Da steh’ ich nun, ich armer Tor!

Und bin so klug als wie zuvor;

J. W.v. Goethe: Faust ]

Summary and contributions of this thesis
The main contributions of this thesis are

e a formal definition of the denotational semantics of symbolic execution for a wide class of
specification and programming languages, expressed in terms of the denotational semantics
of the language being executed. This provides a language-generic notion of correctness for
symbolic execution.

o the development of a language-generic tool for symbolic execution which can handle spec-
ifications as well as programs. This is based on (a particular version of) the operational
semantics of the language being executed.

" The thesis describes the symbolic execution system SYMBEX that is to help users to validate

.. ‘specifications by-symbolically executing them. SYMBEX is a language-generic tool in the sense

that it can he used with any specification language in which software systems are specified in
terms of states and state transitions. However, it cannot properly deal with languages that are
based on a fundamentally different paradigm, for example algebraic specification languages.

A central part of this thesis and an important step in the development of SYMBEX is the defini-
tion of the denotational and operational semantics of symbolic execution, including a discussion
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of their relationship. Correctness of symbolic execution under the notion introduced by the de-
notational semantics is equivalent to the faithfulness of the operational semantics with respect to
the denotational semantics.

SYMBEX as described in this thesis forms the nucleus of a symbolic execution system. How-
ever, to actually use it for any particular language, it needs to be instantiated for that language.
This is done using a description of the operational semantics of the language to be symbolically ,
executed, including the simplification theory. §4.2 explains how to develop such a description
and provides the appropriate rules for several language constructs, but does not give the whole
operational semantics of any particular language.

Also needed is a theorem proving tool that stores the theories of operational semantics, sup-
ports application of these rules, and also supports simplification, both with and without user sup-
port. Such a tool is provided by the work on FRIPSE within the IPSE 2.5 project, but other systems
with similar functionality would be equally suitable.

The question obviously arises how useful SYMBEX is for its intended purpose, the validation of
specifications. Since SYMBEX has not been fully implemented yet, a final answer to this question
cannot currently be given. Some answers do, however, emerge from the work done to date and
are given in the following.

As mentioned before, we require that, among other things, an operational semantics descrip-
tion and suitable simplification tactics for the specification language used are given. To make
symbolic execution genuinely useful, these have to be such that the results of symbolic execution
of a specification that the user gets to sec are both sufficiently simple and sufficiently different from
the specification itself to actually help the user in understanding the specification. For any lan-
guage that is more than just a toy example, developing such an operational semantics description
and such simplification tactics is a very difficult task. Remember for example the very complex
rule needed to describe if-then-else (see §4.2.7).

This is partly due to the emphasis on language-genericity, which prevents the use of language-
specific tricks and shortcuts that could be used in order to get results that are easy to understand. .
Instead, all language-specific knowledge has to be expressed in terms of the operational semantics

and the simplification theories. Of course, an important advantage of this approach is that it
enforces a clear structure on the language description, which is therefore less error-prone.

However, it remains questionable whether restricting oneself to any particular specification
language would really gain a lot, since most of the problems in understanding the results of
symbolic execution arise from the inherent complexity of these results and not from the difficulty
of providing language-generic simplification mechanisms. For example, the output from the GIST
symbolic executor itself is quite difficultto understand, even though this system only has to support
the GIST specification language. However, the work done on GIST also points to a possible solution
to the problem of results that are 00 difficult to understand, in form of the paraphraser and the
behavior explainer (as discussed in §2.1.2). The development of such support tools for SYMBEX

is therefore one of the tasks suggested for future work. While in GIST these tools were provided
for one particular language, in IPSE 2.5 or SYMBEX they can hopefully be provided as language-
generic tools working on 2 description of syntax and semantics of a wide class of languages.
Note in this context that the paraphraser and the behavior explainer are different tools, acting
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on different languages — the paraphraser handles specifications, while the behavior explainer
handles the output from symbolic execution.

Overall one can say that SYMBEX is a useful tool for interactive exploration of specifications,
even though it does not quite provide as much automatic feedback on a specification as had been
hoped for at the outset of this work. This implies that it depends a lot on the user whether or not
symbolic execution provides her with useful feedback. It will therefore probably not be quite as
useful as had been hoped for for demonstrating what has been specified to a customer with little
or no knowledge of the specification language used. This will probably change if a tool like the
behavior explainer does become available for SYMBEX. For the specifier, however, it provides an
opportunity to explore the specification and its implications to an extent that has, until now, not
been possible. This opportunity is available early on in the specification process, long before the
specification has been completed, since the description values resulting from symbolic execution
may be expressed in terms of the names of functions used rather than their definitions. Obviously,
one will not be able to unfold a function name until that function has been defined — one can
only validate those parts of the specification that have been written at any point in time. Instead,
symbolic execution allows one to explore and validate the overall structure of the specification as

soon as this overall structure has been written and before further work is based on it to fill in all
the details. ‘

Comparison with other work

Of all the symbolic execution system discussed in §2.1.2, GIST is the one whose approach is by far
the closest to that of SYMBEX. This is mainly due to the fact that both systems support symbolic
execution of specifications, as opposed to programs, and that the main aim of both systems is the
validation of specifications.

There are two main reasons for the differences between the two systems: the first is the
fact that GIST supports a fixed specification language, while SYMBEX is generic over a whole
class of languages. The second is the fact that SYMBEX aims for a complete description of the
results of actual execution (even though this might not always be achieved — weak symbolic
execution), while in GIST the results of symbolic execution are consequences from such a complete
description, GIST from the outset only aims for weak symbolic execution (in the sense defined in
Figure 4.2).

In comparison with other symbolic execution systems such as EFFIGY or DISSECT, SYMBEX
obviously differs a lot because of the extension of symbolic execution to specifications and the
genericity of SYMBEX. As a result, the symbolic execution technique used by SYMBEX is very

. different from that used in other systems, indeed at the syntactic level there is little resemblance.
The reason for using the same name “symbolic execution” for the new technique is that at the
semantic level, SYMBEX provides a straightforward extension of what was done by these other
systems. All the symbolic execution systems described have the same denotational semantics, they
differ mainly in the languages supported and in the additional facilities provided, such as test case

“generation or some form of verification support. Another difference between the various systems
is the result language permitted, the language for expressing the results of symbolic execution.
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Most systems only allow the language of polynomials over input variables, plus a few minor
extensions. This leads to obvious problems in expressing the results of symbolic execution of
various statements, in particular while-loops. None of the systems, with the exception of Harvard
PDS, is able to support the full while-statement. Instead, they all make various assumptions about
the loop, be it by insisting that the body of the loop gives rise to a solvable recurrence relation
(e.g. ATTEST), or indirectly by restricting the number of iterations of the loop.(e.g. EFFIGY). The -
approach taken by both Harvard PDS and SYMBEX is to use a considerably more cxpresgive
result language by introducing a particular kind of A-expressions (Harvard PDS, cf. §2.1.2) or
description values (SYMBEX).

The extended result language of description values as used in SYMBEX means that a much
wider class of language constructs can be symbolically executed (as obvious from the fact that
SYMBEX supports specification languages). The drawback of this extension is that the results are
potentially much “weaker” in the sense that they may not provide as much of a new perspective
on the specification (or program) as might be the case with a more conventional result language.
Whether this is the case in symbolic execution of any particular specification again depends very
much on the simplification of the result. As an example, consider symbolic execution of some
small imperative programming language as supported by any of the more conventional systems
(cf. §4.3). Using SYMBEX to symbolically execute any program in this language, one would at
first get a collection of description values of the form Xy = f(x). To get the same results as one
would get from any of the other systems, one needs to apply a simplification tactic that replaces
Xip1 by f(x:) in all future description values. The end result would then be, for each variable x, the
description value x, = g(x1, Y1, . .), while using any of the other systems x would finally have the

symbolic value g(x1,y1, -- B}

Suggestions for future work

Finally, a short summary of the issues that remain to be solved and are suggested as topics for -
future work: first of all, this includes the description of the full operational semantics and its
simplification theory for some specific formal specification language. This work will be able to
build on §4.2 of this thesis, but obviously a lot remains to be done.

A second suggestion for future work that has been mentioned before is the development of
a “paraphraser” and a “behavior explainer” (GIST terminology). Like SYMBEX, these should be
generic with respect to the language supporied, but an instantiation for some particular specifi-
cation language should of course also be developed. Obviously, the language selected should
preferably be one for which a description of its operational semantics and simplification theory
already exists.

The work in this thesis has been restricted to specification languages that are based on the
notions of states and state transformations. The question remains whether it can be extended to a
wider class of languages, and, if so, how this could be done. This thesis only briefly touched on
this question in §4.3.

A useful extension to SYMBEX would be to combine the approach to symbolic execution
taken here with that taken in GIST and add a tool similar to the FIE (Forward Inference Engine, cf.
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§2.1.2) which would automatically derive certain “interesting” inferences of the description values

given. These could then cither be added to the description values of the relevant identifiers, or just
displayed to the user. Of course, there is the dual problem of generating interesting consequences
as well as trivial ones, and then of selecting these interesting ones. Overcoming this problem
would probably need a major project in its own right, which is why the current version of SYMBEX
does not include such an extension.

Another useful extension would be to include some form of version control system to allow
for changes in the specifications in a Module without losing the information gained from symbolic
execution in that Module. As described on page 115, such a too! would update the SEStateOps
1o take account of changes to a specification. Those parts of the SEStateOp that are not affected
by the change would remain unchanged, while those parts that are affected would be changed
accordingly, or at least marked as ‘unsafe’. Since SYMBEX is intended to help a user to check
a specification, the results of symbolic execution wilt often lead to changes of the specification.
Obviously, the user will then not want to lose any more than necessary of the validation work

already done.




Appendix A

Proofs of theorems and lemmas

Wir filhlen, dass selbst, wenn alle mdglichen wissenschaft-
lichen Fragen beantwortet sind, unsere Lebensprobleme noch
gar nicht beriihit sind. Freilich bleibt dann eben keine Frage
mehr; und eben dies ist die Antwort.

Ludwig Wittgenstein:
Tractatus Logico-Philosophicus

A.1 Proof of Lemma 4.1.7

For all 7: SEStateDen

yield(symbolic-ex{[speci; spec2]I7)
= Ao -{o1|30-seq € SEQS(symbolic-ex[[specy; spec2]7) -
hd 0-seq = O Alasto-seq = 01
A len 0-seq = LEN(symbolic-ex[[specy; speca] )}
Ao -{0oy | Ao-seq - front o-seq € SEQS(T)
Alen o-seq = LEN(T) + 1 Alast 0-seq = 0y Ahd O-5eq = O
A Mspecllspecy; speca T(lastfront o-seq, last o-seq)}
Ao - {0y | Jo-seq - front 0-seq € SEQS(7)
Alen o-seq = LEN(T) + 1 Alasto-seq = 01 Anhd O-seq = O
A 30y - Mspecllspeci I(lastfront o-seq, 62) A Mispecllspeca])(0z, 1ast o-seq)}
Ao - {0y | 3o-seq’ - frontfront o-seq’ € SEQS(7)
Alen o-seq’ = LEN(T) +2 Alast 6-seq' = 0y Ahd 0-s¢q' = O
A Mspecllspect J(last front front o-seq’, last front 0-seq”)

A Mspecllspecali(last front o-seq’,\ast 0-seq’)}
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Ao - {01 | 3o-seq’ - front 5-seq’ € SEQS(symbolic-ex|[speci]|T)

Alen 0-seq’ = LEN(symbolic-ex[[spec,]JT) + 1
Alasto-seq’ = 0y Ahd 0-seq’ = o

A Mspecllspecall(lastfront o-seq’, last o-seq’)}

i

Ao -{01 | Jo-seq’ - 0-seq’ € SEQS(symbolic-ex-s{[[specy, speca]1T)
A len o-seq’ = LEN(symbolic-ex-s{[[specy, spec117)
Alast o-seq’ = 01 Ahd 0-seq’ = o}

yield(symbolic-ex-s|[[spec, spec2 11 T)

A.2 Proof of Theorem 4.2.2

We show, by induction on len SEQ(S), that
VS: SEStateOp - inv-SEStateDen(M SEState0plST)
Base case: len SEQ(S) = 1 We have to show that

let set = {[0] | satisfies-all-restrictions([c], S, 1)} in '
Vo-seq € set-leno-seq <1
AV o-seq,, 0-seqz € set-Vo-seq:seqof X -
o-seq) = O0-seqy —~ O-seq = O-seq=1{]
which is trivially true.
Induction step: Now assume that, for some S, inv-SEStateDen(Mseswe0p[ST) and consider
S’ = mk-SEStateOp(SEQ(S) ~ e, INDEX(S)), for some e. We first have to show that

Vo-seq € SEQS(M sgsiateopllS’]) - len 0-seq < LEN(M sgstareop[ST)

This follows immediately from the definition of M sgse0,[S']-
For the second part of the proof assume that

o-seqy, 0-seqy € SEQS(M sesiare0pS'T)
and that for some o-seq: seq of Xy

o-seqy = O-seq; —~ O-seq
We distinguish three cases:

Case 1: len 0-seqy = LEN(M sEs1ae0p[[S'T)

) In this case o-seq = [j follows immediately, since there are no sequences in
SEQS(A sg5101e0p[[S° 1) that are longer than LEN(M sgsiate0p [S'])).

Case 2: len 0-seqs = LEN(M sgstateop Sm-1

Then, by definition of M sgsiare0p,

Y

—do: 2, - satisfies-all-restrictions(o-seq, ~ 0,5, len SEQ(S"))
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therefore o-seq cannot have length 1. It cannot be longer either, since then o-seq; would
be too long to be in SEQS(MSEs,a,eop[[S D). This only leaves o-seq =[], as requlred
Case 3: len 0-seqs < LEN(Msgsiare0p[S'T) — 1
In this case G-seq2 € SEQS(M sesuareopllS]), and we have to distinguishtwo further cases:
Case 3.1: o-seq, € SEQS(M sgsiae0plST) - :
Then o-seq = [ ] follows by induction hypothesis.
Case 3.2: 0-seq1 & SEQS(MsEsiare0pST)
In this case, since o-seq; € SEQS(M sgsiae0pllS'T)
front o-seq; € SEQS(M sEsuie0pllST) A len o-seqy = LEN(M sgsiae0p(ST) + 1

Now assume o-seq # [ ]. Then front o-seq) = 0-seqz — front o-seq, and one can apply the
induction hypothesis to get front o-seq = [ ], or len 0-seq = 1. Then

len o-seq; = leno-seq; +leno-seq
(LEN(M sEstae0pllS'T) - 1) + 1
len o-seqy

A

which shows that our assumption o-seq # [ ] must have been false.

A.3 Proof of Theorem 4.2.10

Note that len SEQ(S) ~ m = 2. Let sm: SpecMap be given, let Seq = SEQ(S) and let
S’ = add-to-SEStateOp(S, m)
We have to show that Mcon[{[Op], $}] = Mconf[{[1,57) 1. Obviously
LEN(M conf[{[0P), $)1) = LEN(MconfI{[ 1. ) 1)
since
M cons[{10p), S)T = symbolic-ex[sm{Op) (M sEsiate0pllST)
and
MeonfI{[ 1,5 = MsgstareopllS’]

We now show
- SEQS(Mconf{11,5)1) € SEQS(M confI{[0P]. SHI) (A1)

Assume o-seq € SEQS(Mconf[{[1,5")1). Then by definition of Mconf
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satisfies-all-restrictions(o-seq,S’,lenSeq + 1)
A [front -seq € SEQS(M sgstate0plST)
Alen g-seq =lenSeq+1
v 0-seq € SEQS(M sEsate0plST)
Alen g-seq = len Seq
A—d0 - satisfies-all-restrictions(c-seq r~ 0,5, lenSeq + 1)
Vv O0-§€q € SEQS(MSEStaleOp[[S]])
A len o-seq < len Seq]

and we distinguish three cases:

Case 1: len o-seq = lenSeq + 1
Because of satisfies-all-restrictions(0-seq,S’,lenSeq -+ 1) and in particular
satisfies-restrictions(c-seq,S’,lenSeq + 1) we know

vi(o-segllen Seq + 1])

A ya(o-seqllen Seql, o-seqllen Seq + 11)
A ys(o-seqllen Seq + 1])

A ya(o-seqllen Seq), o-seqllen Seq + 1])
A Ws(o-seqllen Seq + 1])

A Ws(o-seq[len Seq), o-seqllen Seq + 1])

where the V; are the predicates used in defining m. Now for all a1, 02
¥a(01, G2) A Ya(01, B) A Ys(01, 02) & Mpecllsm(Op)l( a1, 02) (A2)

which implies that 0-seq € SEQS(symbolic—ex[[sm(Op)]](Msgs,a,eo,,[[S]])). Note that = of
(A.2) would not hold if len o-seq < len Seq + 1.
Case 2: len o-seq = lenSeq

In this case

o-seq € SEQS(M sgstare0plST)
A —30 - satisfies-all-restrictions(G-seq ~ 7,5, len Seq + 1)
A satisfies-all-restrictions(o-seq, S’,lenSeq + 1)

Because of the well-behaviour of S (which implies well-behaviour of S, the last two con-
juncts imply that

—3a. satisfies-restrictions(c-seq ~ 0,5, len Seq + 1)

Again because of well-behaviour, this implies
—30 - A Ameny Satisfies-restriction(o-seq ~ O, ps, INDEX(S))

@

This is a contradiction, since (according to Definition 3.1.1) for every input state o’ (in
particular last o-seq) there exists an output state o s.t. M gpgc{[Op]](o’ ,0).
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’ Case 3: len 0-seq < lenSeq
] In this case 0-seq € SEQS(MsgsiaeoplST) and .
o-seq € SEQS(symbolic-ex[[sm(Op)]](Msgs,a,eop[[S]])

] follows immediately from the definition of symbolic-ex. -
" We have thus shown that (A.1) holds. For the converse, let 6-seq be in -
4 SEQS(symbolic-exlsm(Op)}(MsrsaeopISD)
el Case 1: len o-seq = lenSeq + 1
el Then
I front o-seq € SEQS(M sEstate0pST)
. A Mspec[[sm(Op)]](O'-seq[len Seql, o-seqllen Seq + 1])
o The first part together with Lemma 4.2 4 (well-behaviour) implies that
- satisfies-all-restrictions(o-seq, S, len Seq)
— = while the second together with (A.2) implies that
- satisfies-restrictions(0-seq, S’.lenSeq+1)
T Together these imply
= satisfies-all-restrictions(o-seq, S.lenSeq+1)
o ] and therefore o-seq € SEQS(Mconfl{[1,5°)1), as required.

L Case 2: len o-seq < lenSeq
] In this case we have
o-seq € SEQS(M sgswareopllST)

] and therefore
e ] satisfies-all-restrictions(0-seq, S, len Seq)
The definition of m together with the definition of satifies-all-restrictions now implies
T satisfies-all-restrictions(0-seq,S’, lenSeq + 1)
-
and again we get 6-seq € SEQS(Mconfl{(1.5)1), as required.
E
}
E
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A.4 Proof of Lemma 6.1.1

Let S be any SEStateOp. We first show that
pre-get-element(S, current-index(S))

current-index(S) # [] is trivially true by definition of current-index. The second part of the pre-
condition can be shown by induction over len front current-index(S).
Now we have to show that

get-element(S, current-index(S)): SE-map

Again, this is done by induction over len front current-index(S):
Base case: If lenfront current-index(S) = 0 then

last SEQ(S): SE-map

by definition of current-index and

get-element(S, curreni-index(S))
SEQ(S)[last current-index(S)]

SEQ(S)[len SEQ(S)]
last SEQ(S)

1l

Induction step: len front current-index(S) >0

get-element(S, current-index(S))
get-element(SEQ(S)[last current-index(S)), front current-index(S))
get-element(last SEQ(S), front current-index(S))

Since front current-index(S) = current-index(lastSEQ(S)) we can now apply the induction hypoth-
esis to get that

get-element(S, current-index(S)): SE-map

as required.
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Appendix B

Short summary of VDM

...itis now a well-established phenomenon that what is highiy
abstract for a generation of mathematicians is just commonplace
for the next one.

J. Dieudonné

B.1 VDM-notation

The following is a (very) short summary of some VDM-notation that is used in this thesis and
which is not standard mathematical notation. Compare also the Glossary of symbols, which lists
some more notation used. The version of VDM used here is that given in [Jon86]. Note that
here I only consider VDM as a specification language and ignore the fact that VDM really is a -
methodology for software development.

VDM is based on the notions of states and state transformations called operations. It supports
a number of primitive data types such as finite sets, maps and sequences, and also allows product
types and defined types. A type definition takes the form

type-name = type-expression

where type-name is defined to be type-expression. Additionally one can provide a type invariant
in order to define sub-types:

type-name = type-expression

where

inv-type-name(t) 2
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Definitions of record types take the form

type-name :: field-namel : field-typel
field-name?2 : field-type2

Operations that access the state of a system are specified in the form

OP (a:T))r:T,

extrder : T,
wrew : Ty

pre @(a, er,ew)

post w(a, ew,r, er, ew)

Here a: Ty denotes the arguments of the operation, : 7> denotes the result, er: T3 the external or
state variables to which the operation has got read access, and ew: T3 the external or state variables
to which the operation has got write access. @ denotes a pre-condition, i a post-condition. The
semantics of OP is defined as: if the pre-condition holds before the operation, then the post-
condition will hold afterwards. Since the operation may have changed the state, the post-condition
refers both to the values before (ew) and after (ew) the operation.

All the parameters in the definition of an operation are optional. In particular, this notation
can be used for implicit function definitions, which do not have extemal read and write variables.

Explicit function definitions take the form

f -1
f(x) & bodyx)
pre (x)

A sequence seq is identified with the map {i — seq[i] | i <lenseq}.

B.2 LPF — The Logic of Partial Functions

The logic used for VDM is LPF, the Logic of Partial Functions [Jon86, BCJ84]. LPF is a three-
valued logic that allows handling of undefinedness. It is an extension of classical logic, and in
some sense a ‘generous’ extension in that it always tries to assign a value to an expression, even
if components of the expression are themselves undefined. For example, false A L is defined to
_be faise rather than L. Similarly, true v L is defined to be true.

 —

B.3 Some auxiliary functions

Ihe following functions are based on the BSI-Protostandard for VDM [BSI88, And88]. Given a
sequence of NameTypePairs, the following functions extract the appropriate sequences of Names
and Types:



APPENDIX B. SHORT SUMMARY OF VDM 139

names : seq of NameTypePair — seq of Name

names(nt-seq) & if nt-seq=1]
then []
else cons(name(hd nt-seq), names(il nt-seq)) -

types : seq of NameTypePair — seq of Type

types(nt-seq) & if nt-seq=1[]
then []
else cons(type(hd nt-seq), types(tl nt-seq))

Given a sequence of ExtVarlnfs, the following functions extract the appropriate sequences of
Names and Types from it, separately for variables with read- and write-access:

readnames : seq of ExtVarlnf — seq of Name

readnames(evi-seq) &
if evi-seq =[]
then []
else if mode(hd evi-seq) = READ
then cons(name(rest(hd evi-seq)), readnames(ti evi-seq))
else readnames(ti evi-seq)

readwritenames : seq of ExtVarlnf — seq of Name

readwritenames(evi-seq) 2
if evi-seq =[]
then []
else if mode(hd evi-seq) = READWRITE
then cons(name(rest(hd evi-seq)), readwritenames(tl evi-seq))
else readwritenames(tl evi-seq)

readtypes : seq of ExtVarlnf — seq of Type

readtypes(evi-seq) &
if evi-seq =[]
then [ ]
else if mode(hd evi-seq) = READ
then cons(type(rest(hd evi-seq)), readtypes(ti evi-seq))
else readtypes(tl evi-seq)
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readwritetypes : seq of ExtVarInf — seq of Type

readwritetypes(evi-seq) &
if evi-seq ={ ]
then []
else if mode(hd evi-seq) = READWRITE
then cons(type(rest(hd evi-seq)), readwritetypes(tl evi-seq))
else readwritetypes(tl evi-seq)

The following functions extract the invariant on a TypeDef, Name (of a TypeDef) or Type in a
module, if any; if it does not have an invariant, the functions retum true.

inv_of -TypeDef : TypeDef x Module — ExplFuDef

inv.of -TypeDef(t,m) 2 if inv(TypeDef) nil
then inv(TypeDef)
else mk-ExplFnDef (nil, nil, [ ], true)

inv.of -Name : Name x Module — ExplFnDef
inv_of -Name(n,m) 2 inv_of -TypeDef (typem(body(m))(n), m)

pre n € dom typem(body(m))
A typem(body(m))(n) # nil

inv-of -Type : Type x Module — ExplFnDef

inv.of -Type(t,m) & it 3n: Name - t = mk-TypeName(n)
A n € dom typem(body(m))
A typem(body(m))(n) # nil
then let t = mk-TypeName(n) in
inv.of -Name(n, m)
else mk-ExplFnDef (nil, nil, [ ], true)

]
£

4 &
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+ * L ]
Extracts from the FRIPSE specification
-
- Mein teure Freund, ich rat Euch drum
Zuerst Collegium Logicum. Da wird der Geist Euch wohl
= dressiert,
L In Spanische Stiefel eingeschnirt,
"~ DaB er beddchtiger so fortan
ool Hinschleiche die Gedankenbahn
Und nicht etwa, die Kreuz und Quer,
—— Irflichteliere hin und her.
b J. W.v. Goethe: Faustl
- This section does not contain any work done by the author of this thesis, and is included only
NI for ease of reference. The following are excerpts from [LM88], and section numbers refer to that
g document.
| Primitives (§1.1)
.l
} Apart from the standard VDM primitive types, the primitive types used in this spec include the
] following:
E
e Object-level “atomic” symbols: CESymb (for primitive constants and functions), CTSymb
] (primitive types and type-constructors), ...
' e VSymb (for variables), PESymb (pattern expression symbols or metavariables), PTSymb
A (patter type symbols or metavariables)
- e Other names: Rule-ref, Theory-ref, ThMorph-ref
B These primitive types are assumed to be mutually disjoint, infinite sets of tokens.
o
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Assertions (§1.2)

There are three basic kinds of assertion (or judgement), although we shall add a fourth to represent
“undecided”:

Assertion = LogicalAssertion | TypeAssertion
| TypingAssertion | NullAssertion

The most common kind of assertion is that a formula holds:

LogicalAssertion :: EXP : Exp

The next most common kind of assertion is that an object is of a certain type:
TypingAssertion :: EXP : Exp
TYPE : Type
where

inv-TypingAssertion(mk-TypingAssertion(e, 1)) 2

The third kind of assertion is that a type is well-formed:
TypeAssertion :: TYPE : Type

Instantiations (§3)

Instantiation consists of replacing pattern expression symbols with expressions and pattern type
symbols with types.
Instantiation :: PEMAP : map PESymb to Exp
PTMAP : map PTSymb to Type
A family Instantiate of functions is defined, which applies an instantiation to some object of type
T. Among the types T for which Instantiate has been defined are Assertion and Sequent (see
below).

Signatures and definitions (§4)

Atoms are declared or defined in a signature:

Signature :: PCE : map CESymb to N XN
’ PB : setof BSymb
" PCT : map CTSymb to N xN
"~ DEFS : Definitions
Definitions include definitions of constants, types and binders. Note that recursive definitions will
be allowed.

.
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Sequents and Rules (§5)

Sequent :: PREMISES : setof Assertion
UPSHOT : Assertion -

Rulemap = map Rule-ref to Rule

Rule = STMT : RuleStmt
THEORY : Theory-ref
PROOF : [Proof]

I've assumed that each rule has a single proof so that the circularity check is straightforward. of
course, different rules can have the same statement, SO we can still support multiple proofs. Rules
with null PROOF-field are called axioms; the rest are called derived rules. 1t’s important not to
confuse an axiom with a derived rule having an “empty” proof, ...

RuleStmt :: SEQHYPS : setof Sequent

ORDHYPS . setof Assertion
CONCL : Assertion

The function Establishes checks whether one RuleStmt is established by another (allowing for

renaming of variables etc).

Theories (§6)

Theory :: PARENTS : setof Theory-ref
EXSIG : Signature

Theorymap = map Theory-ref to Theory

where

inv-Theorymap(m) &

Proofs (§8)

Is-Complete-Proof checks whether a proof conducted in a given theory is complete, i.e. whether
it is finished and all the lines used to establish the conclusion have complete and reasonable

assertions and complete justifications (if appropriate).

The Store (§9)

Store :: RULES : Rulemap
THS : Theorymap
THMORPHS : ThMorphmap



Glossary of symbols

Note that symbols which are defined in this thesis are usually only included in the index and not
in this glossary.

Basic types

B Booleans

N Natural numbers (including 0)

N Natural numbers (starting from 1)
Z Integers

More on types

inv-T invariant on T, creates subtype

mk-T constructor function for T’

T::... record construction

Ty | T, type union

T\ xTy type product

T_L Tu {_L}

Sequences

seqof T type of finite sequences with elements from T
-1 __ empty sequence

[eg,....en] - sequence enumeration

hd s "™ head of sequence s

s tail of sequence §

revs reverse of sequence s
Yronts rev oti orevs

lasts hd orevs

lens length of a sequence s

144
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S1~ 5
cons(e, 5)
srve
sfi]

5@, ....J0)

concatenation of two sequences

adding an element e at beginning of sequence s

adding an element e at end of sequence s

selecting the i-th element of sequence s

subsequence of s e

Note that this differs slightly from VDM as described in [Jon86], where ~ is used instead of —~,
and s(i) instead of s[i]. The problem with the latter is that VDM concrete syntax (as described in
[Jon86]) does not distinguish between an element of a sequence and a subsequence of length 1.

Sets

setof T type of finite sets with elements from T

{} empty set

{e1,...,en} set enumeration

{e| P(e)} set comprehension

Maps

mapTtoT, maps (functions with finite domain) from T; to 7>
my tmy map overwrite

{a1— by,...,an — b,} map enumeration

{ar b|P(a,b)}
sam

Others

let. ... in
1

ke
pre-fn
pre-op
post-op
T{t/1]

map comprehension
domain deletion: {d — m(d) | d € (domm - {s})}

local variable declaration

bottom element

bottom state, denotes abortion or non-termination
pre-condition of function fn

pre-condition of operation op

post-condition of operation op

in T substitute ¢; by #



Index

In this index, definitions from FRIPSE in Ap-
pendix C are marked with a star *.

Index of function and operation
definitions

add-restriction, 93
add-restriction-g, 94
add-to-SEStateOp, 58
ASSUME, 93

BELIEVE, 94

case, 62

CHECK, 93
collect-preds, 53, 84
copy-SYMBEXSTATE, 87
current-index, 84
current-names, 58

DISCHARGE, 94
dom, 34

evalseq, 56
execute, 32
EXSIG*, 143
Establishes*, 143

finish-block, 58

get-element, 83

IF, 47
IF-merge-map, 65
interpret, 32
inv.of -Name, 140

146

invoof -Type, 140

inveof -TypeDef, 140
is-initial-SYMBEXSTATE, 87
is-legal-sequence, 51
is-prim-constant-of , 80
Is-Complete-Proof*, 143
isProvenRuleStmt, 85
ITE-merge, 63
ITE-merge-empty, 62

T E—rﬁerge—map, 62

mentions, 79
names, 139

PARENTS*, 143
previous, 62, 84
PROVABLE, 86
provided-then, 57

readnames, 139
readtypes, 139
readwritenames, 139
readwritetypes, 140
REMEMBER, 92
replace, 92

RULES*, 143

satisfies, 34
satisfies-all-restrictions, 52
satisfies-restriction, 51
satisfies-restrictions, 51
SHOW, 89
simp-hypotheses, 90
SIMPLIFY, 90

specs, 80

start-block, 58
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INDEX

statements, 85
symbolic-ex, 43
symbolic-ex-s, 43
SYMB_EXECUTE, 88

7(S), 42
THMORPHS*, 143
THS*, 143
transform, 71
types, 139

W_.REMEMBER, 92
W_SIMPLIFY, 91
w-symbolic-ex, 43

W.SYMBOLIC.EXECUTE, 89

yield, 42

Index of type definitions

Assump, 85
Belief, 85

Conf, 55
ExecutionStep, 97
Index, 50,71, 82
Name, 31

Pred, 31
PredS, 57

Result, 97
ResultButton, 97
Rule, 56, 143*
Rule-ref*, 141
RuleStmr*, 143

SE-elem, 50, 77, 83
SE-map, 50,77, 83
SEStateDen, 42
SEStateOp, 50, 77, 83

%, 31

Spec, 31

SpecMap, 55
SpecName, 55
StepButton, 97
Store*, 143
SYMBEXSTATE, 86
SymbexWindow, 97

Theory*, 143
Theory-ref*, 141
Trans, 56

Val, 31
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