Formal Aspects of Computing (1997) 3: 1-000
© 1997 BCS

Limits of Formal Methods

Ralf Kneuper
Philipp-R6th-Weg 14, 64295 Darmstadt, Germany

Keywords: Formal methods; software quality; correctness; trustworthiness; for-
mal specification

Abstract. Formal methods can help to increase the correctness and trustwor-
thiness of the software developed. However, they do not solve all the problems of
software development. This paper analyses some limitations of formal methods.

1. Introduction

When discussing the possibilities and limitations of formal methods, some people
(often the ‘academics’) take either a highly optimistic view, stressing possibili-
ties and ignoring limitations, or (often developers from ‘the real world’) a highly
pessimistic view, describing certain limitations of formal methods and deducing
that, since formal methods do not solve all our problems, they are useless. How-
ever, during the last few years, more people have started to promote a realistic
view of the applicability of formal methods (e.g. in [CDH'96]).

The main goal of this paper is to support this realistic view of the possibilities
and limitations of formal methods (concentrating, as the title suggests, on their
limitations, because the readership of this journal will already know all (well,
almost) about their possibilities) To some extent, these limitations will seem
quite obvious once stated, but in the author’s experience, some parts of the
formal methods community still do not fully realize them.

Such personal experience led the author to write the current paper. It stems
from working in a formal methods research group for several years (cf. [JJLM91,
Kne91], where he developed a rather optimistic view concerning the applicability
of formal methods. Working first in the quality management group of a major
software house and now in the IT department of a large company, he soon had to

Correspondence and offprint requests to: Ralf Kneuper, Philipp-R6th-Weg 14, 64295 Darm-
stadt, Germany



2 Ralf Kneuper

appreciate that there is much more to producing ‘good’ software products than
using formal methods. This experience led to the current paper.

1.1. Formal methods

There are two fundamental views of formal methods as a discipline:

e as a branch of pure mathematics, an intellectually challenging research field
which may or may not have any application in the “real world”, or

e as a branch of software engineering which is concerned with the design and
application a certain set of development techniques and tools to create better
software systems

Both of these views are legitimate and useful. Problems arise if, for funding
and similar reasons, the first view hides behind the second. This paper will be
based on the second view since the limitations discussed refer to the practical
applicability of formal methods (and, admittedly, this is what the author is most
interested in today).

Software engineering is the technological and managerial discipline concerned with systematic
production and maintenance of software products that are developed and modified on time
and within cost estimates. [Fai85, p. 2]

As for the term formal methods, we use the following definition:

. a formal method is a set of tools and notations (with a formal semantics) used to specify
unambigously the requirements of a computer system that supports the proof of properties of
that specification and proofs of correctness of an eventual implementation with respect to that
specification. [HB95b]

Typical techniques used in formal methods are invariants, proof obligations,
and a calculus for refining specifications or proving properties about specifica-
tions and implementations, and the relationship between a specification and its
implementation.

The emphasis here will be on formal methods concerned with the functional
requirements and correctness, e.g. VDM or Z, but there are also formal methods
concerned with other quality characteristics, such as for dealing with performance
requirements.

Formal methods can be applied at different levels, ranging from ‘only’ writing
formal specification for small parts of a system, via the rigorous approach of ex-
pressing but not usually discharging proof obligations, to providing formal proofs
of program correctness with respect to the specification, or even proving that
the compiler, its environment and the hardware satisfy their specifications (un-
der stated assumptions). Formal specifications are usually considered the most
important and most useful aspect of formal methods:

From an economic point of view, therefore, the most important part of a formal development
is the system specification. For many projects, this is the only part of the development that is
formal. [Hal90, p. 13]

1.2. Goals of using formal methods

As a branch of software engineering, formal methods are concerned with the
systematic production and maintenance of software products, on time and within



Limits of Formal Methods 3

cost estimates, using a certain kind of tools and techniques. Specifically, they are
concerned with correctness and high reliability of the resulting software system,
mainly achieved by

1. supporting the creation of specifications that describe the true requirements
of the user, which are not usually identical to the requirements stated. How-
ever, whether formal methods can help with this task is a matter of con-
tention. While proponents of formal methods claim that this can indeed be
achieved using formal methods because of the unambiguity of formal speci-
fications and the possibility to prove certain properties about it, opponents
state that on the contrary a formal specification is incomprehensible to the
average user and is therefore even less likely to be correct (cf. 3.2).

2. ensuring that the implementation satisfies the specification

3. increasing trustworthiness in the sense that the system developed is not just
correct but known to be correct. When there are high demands on reliabil-
ity and correctness, evidence is needed that a given system indeed satisfies
these demands. A system for which no such evidence is available will not be
acceptable no matter whether it is indeed correct or not.

1.3. Structure of this paper

Section 2 covers a number of issues not addressed by formal methods but nec-
essary for developing high-quality software. Section 3 describes the limits of
formalization in general, which might also be called theoretical limits of formal
methods.

Practical limits of formal methods are dealt with in Section 4. Depending on
the degree of formality, a complete and formal description of the environment
of the software developed (hardware, operating system, compiler, etc.) is needed
but rarely available. Once the technical problems of using formal methods are
solved, one needs to transfer the technology into practical use. This involves
convincing and training developers as well as providing adequate tool support.

In Section 5, the pragmatic limits of formal methods are desribed. These do
not prevent their use but are the reason why formal methods are not always
useful and sometimes not an efficient way to achieve the goals stated.

The paper ends with the conclusions in Section 6.

2. Issues not addressed by formal methods

2.1. Software product quality

Formal methods deal with the software itself and, to some extent, its docu-
mentation. Other important components of software products such as training,
customer support or installation of the software, have to be dealt with separately.

Together, these components and their quality form a considerable proportion
of the quality of software products, and can make or break a product just as much
as the correctness of the software. As a result, successful providers of software
products put a lot of effort into addressing all relevant aspects of a software
product.

This is often done by introducing a quality system, as for example described



4 Ralf Kneuper

in the ISO 9000 series (for software development see in particular ISO 9000
Part 3 [ISO91]). The idea behind such a quality system is to consider software
development as a process consisting of many steps, each of which influences the
quality of the final product. In order to predictably get a quality product at
adequate cost, one needs to assure the quality of the complete process, including
e.g. contract reviews, configuration management, and corrective action in case
of problems. Only if each individual component of the development process is
dealt with adequately, one can expect to deliver a quality product. Specification,
design and development methods (including formal methods) form only part of
a quality system for software development.

The same basic idea is used in the SEI (Software Engineering Institute) ca-
pability maturity model [Hum88]. This model defines five different levels of pro-
cess maturity that an organization developing software can reach, as measured
in areas such as requirements management, configuration management, project
planning, training program, process measurement, etc, and suggests priorities
for improving the development process. Organisations reaching level 3 in this
model (characterized as defined) are considered as having full control over their
development process.

To be useful, the usage of formal methods must be embedded in such a quality
system covering the full development process, to ensure that the advantages of
using formal methods are not lost due to simple mistakes in other areas of the
development process.

Furthermore, formal methods only address certain aspects of software qual-
ity, mainly correctness and reliability. Other aspects, such as efficiency or user
friendliness, are addressed only to a minor extent, if at all. However, although
correctness and reliability are important quality characteristics, they certainly
are not, the only ones. It is sometimes claimed that without correctness, other
aspects of quality such as efficiency are irrelevant since one cannot rely on the
result. Although there is some truth in such a claim, it is certainly not the whole
truth, as can be seen from the fact that very few, if any, of the programs used
today are fully correct. Nevertheless, many of them are useful.

Similarly, formal methods give high priority to abstract properties of the
output (or the input-output relationship, to be precise), but ignore issues of
human-computer interface, such as number representation, line and page for-
mat, or output medium (cf. [Nau82, p.441]). There are few attempts at formally
describing human-computer interface issues, which cover mainly dialogue struc-
tures (e.g. [Mar90]).

2.2. Software systems and their social and ecological
environment

A seemingly obvious but often ignored issue is the fact that software systems do
not stand on their own but are embedded in a social and ecological environment
consisting of different types of users as well as society and the natural environ-
ment around them. This affects the problem of developing ‘correct’ specifications
and deciding what behaviour is correct. Here formal methods can contribute
nothing and do not attempt to do so.!

1 To be honest, this is not just a problem of formal methods but of software engineering in
general.



Limits of Formal Methods 5

Typical issues that must be dealt with are the effects of a software system
on the working conditions of those working with it, their training and their
acceptance of the system.

Looking outside the user organisation, issues to be considered include e.g.
data protection. Occasionally software systems become a problem because they
work too well (e.g. computer trading at the stock exchange has in some instances
led to considerably higher price volatility).

In [CNPT92, p.14], Rolf and Siefkes describe this as follows (Translation by
the author):

Computers are “symbolic machines” ..., programs are formal instructions for computers; there-
fore, mathematics is the proper science for them. But not the only one. The use of computers
affects not computers but people, often also nature. So why this modesty? Computer scien-
tists do not construct computer systems, they manipulate social and ecological systems by
constructing computers into them.

3. Limits of formalization
3.1. Complete formality

As described above, there are different degrees of formality in developing soft-
ware, but complete formality is impossible to achieve. Naur states these limits
of formalization as follows:

“What will be argued here is that in reality the meaning of any expression in formal mode
depends entirely on a context which can only be described informally, the meaning of the
formal mode having been introduced by means of informal statements.”[Nau82, p.439]

Complete formality, though it might seem desirable, is not possible, because
the underlying basis, mathematics, can itself not be formalized completely. An
informal starting point to build on is always needed, such as the meaning of the
symbols of an axiom in a theory.

Standard mathematics is actually not very formal at all in the sense that
little of the language used for expressing mathematical statements is formally
defined, most reasoning takes place in a natural language interspersed with some
formal expressions. Proofs in particular are rarely broken down to the level of
explicit appeal to the axioms, lemmas or theorems used.

Naur further argues that formal expressions are only used as abbreviations
when informal expressions would be too long and cumbersome to use. However,
they are not really necessary, all that can be said “in formal mode” could also
be said “in informal mode” — but not vice versa.

Although correct, this argument misses the important point that formal ex-
pressions can be a huge help when expressing or reasoning about complex issues.
Indeed, due to limitations of the human brain, many insights are not possible
without adequate formal notation, even though once found they can be expressed
in an informal way as well. For example, inconsistencies in a specification are
easier to find and misunderstandings less likely to happen if the specification is
presented in a well-structured form, which is supported by the use of a formal
language.



6 Ralf Kneuper
3.2. Correctness of specifications

Even when using formal methods, there is no way to guarantee correctness and
completeness of a specification with respect to the user’s informal requirements.
There are various approaches to reduce the probability of incorrect specifications
(the author’s work described in [JJLM91, Ch. 9 and App. D] was one of them),
but since the starting point is necessarily informal, one can never be sure to have
gathered all user requirements correctly. Additionally, true user requirements
might be different from what the users say they need, and will usually vary with
time.

This is, however, a fundamental problem of all software development meth-
ods, independent of the degree of (in-) formality, and it is one of the goals of
formal methods to reduce it as far as possible. Whether they succeed more than
other development methods is a question that cannot be answered in general,
since the answer will depend on factors such as the specific method and tools
used, the structure of both the problem domain and the specification used to
describe it, and the mathematical maturity of the users who check the stated
requirements. Formal methods have the potential to achieve more than informal
methods with respect to correctness of the specification, since they provide a
unique meaning for the stated requirements and reduce (ideally prevent) ambi-
guity. They offer a basis for reasoning about the specification and a number of
heuristics for checking the completeness and correctness of a specification (such
as the proof obligations for VDM [Jon90]).

The formal methods used today do not fully achieve this potential, since
the notations used are very difficult to understand for people not fully familiar
with mathematical notations, such as typical users of software. As a means of
communication with the customer, a notation such as VDM or Z is not suitable.
Hall mentions three ways to make formal specification comprehensible to the
user:

e Paraphrase the specification in natural language.
o Demonstrate consequences of the specification.
e Animate the specification.
The first way is always essential. A mathematical specification must be accompanied by

a natural-language description that explains what the specification means in real-world terms
and why the specification says what it does. [Hal90, p.18]

A promising approach to simplify the task of paraprasing a formal specifica-
tion in natural language is the GIST paraphraser (described in [Swa82]), which
translates a formal specification (written in GIST) into natural language. While
an automatic translation from natural to formal language is, in general, im-
possible, the reverse translation is not too difficult and can be very useful for
making (formal) specifications easier to understand. Actually, the experience of
the developers of the GIST paraphraser showed that the different view provided
by such a paraphraser even helped them to discover problems in a specification
that they had not noticed in the formal specification itself, in spite of their ex-
perience with formal notation. On the other hand, had they started writing an
informal specification, it is unlikely that this specification would have turned out
as well-structured as the informal specication derived from the formal one.

An alternative approach is to use common graphical techniques such as data
flow diagrams or entity relationship diagrams and provide them with formally
defined semantics so that they can form the basis of a formal development ap-



Limits of Formal Methods 7

proach. The paper by Larsen, Plat and Toetenel [LPT94] is an example of this
approach and provides many references to similar work.

3.3. Correctness of implementation

In general, it is undecidable whether or not a given program satisfies a given
specification, i.e. whether an implementation is correct. For example, when us-
ing a verification approach such as Hoare logic, one needs to identify the loop
invariants, which is not possible automatically.

As a result, it is very difficult and often impossible to prove the correctness
of an existing program that has not been written with the correctness proof in
mind. Correctness proofs are only feasible if programming and proof go hand in
hand. If programmers think about how to prove the correctness of a program
while they write it, they will write a different program. They will be able to
prove the program correct because when they write a program statement they
(hopefully) know why it achieves what is needed.

...you construct a correct program in small steps. Each step takes the specification and pro-
duces something a little nearer to the to the final program. Each step is small enough that you
can see exactly what needs to be proved to show that the ste is correct — and, if in doubt the
correctness, you can actually carry out the proof. [Hal90, p. 15f]

This approach is close to trying to ensure correctness by transformations (e.g.
[PM87] rather than creating a proof. If the transformations are automated, then
this is equivalent to programming at a higher level of abstraction, sometimes
also called executable specifications.?

There are three possible reasons why the proof of correctness of an imple-
mentation with respect to its specification might fail:

e The program is actually incorrect and needs to be modified
e The program is correct, the correctness proof just has not been found yet

e The program is correct, but there is no correctness proof, for example because
the proof depends on an unprovable statement or, put differently, the proof
system used is too weak. Although this case may, in theory, occur, it implies
that the programmer does not and cannot know whether the program written
is correct. This case therefore should never occur in practice, or if it does,
the program should be ‘corrected’ just like an incorrect program, or, possibly,
the proof system needs to be modified.

The difficulty here is that it is not decidable which of these three possible reasons
applies. So if after serious searching no proof has been found, there is no real
alternative to revising the program based on a new analysis of how it is to
implement the desired functionality.

Of course, a proof of correctness is not necessary for a program to be correct.
However, in many cases the fact that a program is correct is of limited use as
long as we do not know this, or at least have good reason to believe it. The
difference here is similar to that between truth and provability of a statement.
Put differently, the program needs to be trustworthy as well as correct.

2 Calling this “specification” rater than “programming” is comparable to the introduction of
third-generation languages such as Fortran and Cobol. At the time, this was considered as
“automated programming”.



8 Ralf Kneuper

One of the curious things about the trustworthiness of a program is that it
does not really depend on the correctness of the program itself (which, in general,
is not known) but on the correctness of other programs developed under simi-
lar circumstances and using similar methods (which is assumed to be known).
Even if a program has been proven to be correct (under appropriate assump-
tion), the proof itself might still be faulty, and we therefore only consider the
program trustworthy because of previous (hopefully positive) experience with
similar proofs.

Additionally, the compiler is itself a software system and as such unlikely to
be fully correct. As a result, if very high trustworthiness of the system to be
developed is required, formal methods must have been used in developing the
compiler as well as the system itself. On the other hand, if such a compiler is
not available, this does not restrict the use of a formal method but limits the
confidence in the results.

3.4. Correctness of proofs

There are two main reasons why correctness proofs (and, as a result, the cor-
rectness of proofs) play an important part in formal methods. Given that it is
usually impossible to know for sure that a program is correct, correctness proofs
at least increase the probability that the program is correct and thus increase
the trustworthiness of the program. This applies to complete correctness proofs
as well as to proofs of individual properties of a program, its specification or the
relationship between a program and its specification.

As described by De Millo et. al., ‘mathematical’ proofs are checked in social
(and therefore fallible) processes before they are accepted as correct.?

We believe that, in the end, it is a social process that determines whether mathematicians feel
confident about a theorem — and we believe that, because no comparable social process can
take place among program verifiers, program verification is bound to fail. We can’t see how
it’s going to be able to affect anyone’s confidence about programs. [MLP79, p.271]

In verification of programs, such a check is only possible to a very limited extent
using reviews, inspections, etc.

One approach to increase confidence in the correctness of a program and its
proof is to automate the correctness proof using some form of theorem proving
tool. Unfortunately, we are dealing with a problem here that is not computable,
and even restricting oneself to a reasonably large class of special cases, such
an automatic program prover is, in spite of a lot of research in this area, not
currently feasible.

Additionally, even an automatically generated proof can still contain errors,
although this would hopefully be considerably less likely than for a manually
generated proof.

A proof checker (as opposed to a theorem prover) would be much easier to
build (for a start, we are now dealing with a decidable problem) and provide a
very high degree of confidence in the correctness of a program “proven” correct.
Such a tool only takes given proofs and checks them for correctness, without
trying to generate any proofs itself.

3 A good example of this process is the recent discussion whether the claimed proof of Fermat’s
Last Theorem by the mathematician Wiles is valid.



Limits of Formal Methods 9

The main problem here remains in creating the proofs in the first place.
In particular, to check proofs automatically for correctness, the proofs must be
formal proofs rather than proofs in the usual mathematical, semi-formal style
— which implies that, in practice, they are close to impossible to verify by hand
using the social process described above.

3.5. Abstract machine and target machine

As noted by Fetzer [Fet88, p. 1058], there is a difference between the correctness
of a program (on an abstract machine) and the correctness of any execution
of the same program on any physical target machine. A layer consisting of the
compiler, hardware, and various other parts of the environment separates the
two.

To model this layer, a formal description of the environment that the program
is to work in is needed. Such a formal description is a mathematical model
of certain aspects of “the real world”. As is always the case for such models,
there is no guarantee that they describe all important features of our physical
environment. This means that e.g. after a hardware failure, the model is no
longer correct and a program may no longer work as intended even though it
was proven correct.

Therefore, programs that are run on an actual computer can only be verified
relative to the environment provided by this computer, while absolute verification
is only possible for running the program on an abstract machine but this is not
usually what users are interested in. From this, Fetzer deduces

The success of program verification as a generally applicable and completely reliable method
for guaranteeing program performance is not even a theoretical possibility. [Fet88, p.1048]

Put like this, the statement is of course true but not surprising since the same
argument holds for any method that is used for making statements about the
physical world.

As a result of the possibly different behaviour between abstract machine and
target machine, the traditional approach of testing software in order to validate
and verify it cannot be replaced by formal methods, even though testing, too,
is quite insufficient on its own. The two approaches can be combined, using a
formal specification to generate test cases and check that the test results are
correct, i.e. satisfy the formal specification [HP95].

4. Practical limits
Most of the limits discusssed so far concerned the effectiveness of formal methods
for improving correctness and trustworthiness of software products. We now con-
sider some limitations that make formal methods, and in particular correctness
proofs, difficult to apply.

4.1. Dealing with complex language features

For many important language constructs and software system components, for-
mal definitions of their semantics are either not available or too complex to be



10 Ralf Kneuper

useful. However, in order to prove properties of programs using these constructs
or components, such a describption would be necessary. Examples are

e complex data structures
e pointers

e human-computer interface (HCI) and error messages. DeMillo et. al. mention
estimates that more than half the code of any real production system con-
sists of HCI and error messages [MLP79, p.277]. Of course, these can also in
theory be formally specified and, if considered necessary, the implementation
verified, but again the resulting expressions get very complex and cumber-
some to handle. It seems very unlikely that this would help to achieve the
main goal of the HCI, making the system developed easy to use.

Rounding errors and size limitations could also be included in this list but will
be dealt with as part of the technical environment described in Section 4.2.

For all these limitations one can argue that the actual problem is not the
complexity of the techniques needed to deal with them in a formal manner, but
the complexity of the language features themselves. Formal methods just make
this existing complexity visible and force the developer to deal with it explicitly.
For example, pointers are not just difficult to deal with using formal methods,
but are also a common source of errors in programming in general.

4.2. The technical environment

In order to prove the correctness of a program, a formal description of the en-
vironment a program is to work in (e.g. hardware and operating system) must
be available, in addition to the formal definition of the programming language
and its features. Such a formal description is often not available for the kind of
technical environment used in industrial software development even though, in
principle, it is quite possible to create it. The problem is made worse by the fact
that such a formal description has to take a very specific form depending on the
formal method used (for example as a theory to be used in a theorem prover).

This applies to both the development environment and the production en-
vironment. As for the development environment, a formal definition of the pro-
gramming language used and its semantics as implemented in the compiler is
needed. For languages other than toy languages this brings us back to the prob-
lems with complex language features described above.

Once development of a system is complete, it is (hopefully) put into produc-
tion in a production environment. This usually consists of hardware, operating
system, and many other systems such as TP monitor, DBMS and drivers for
various peripherals such as printers. For each of these, the exact semantics of all
interaction with the system must be defined.

Additional complications are introduced by the following aspects of the en-
vironment:

e rounding errors in computations with floating point numbers. These are the
reason why formal methods are not usually applied to numerical algorithms.
e size limitations. These can be handled (“clean termination” [CH79]) but the
resulting specifications get very complex. For example, the fact that only a
finite number of integers can be represented on a computer can be described
by introducing upper and lower bounds on integers. In that case, however,



Limits of Formal Methods 11

standard properties such as the associativity of addition no longer hold in
general.

The relevance of these limits depends upon the level of formality applied. As
far as formal specifications are concerned, they do not really make any difference.
However, as soon as one starts to prove any properties of the implementation,
one needs to formalize some aspects of the technical environment. However,
most of these aspects are usually ignored in order to concentrate on the main
functionality of the system to be developed, accepting that e.g. size limitations
need to be dealt with in some other way.

4.3. Scalability of formal methods

Most current formal methods are mainly applicable to small-scale applications,
but do not scale up well.

The classic formal methods fall into the small-grain category. These methods have a math-
ematical basis at the level of individual statements and small programs, but rapidly hit a
complexity barrier when programs get large. In particular, systems for reasoning with pre- and
postconditions — such as Hoare axioms, weakest preconditions, predicate transformers, and
transformational programming — all have small-size atomic units and fail to scale up because
they do not provide structuring or encapsulation. [LG97, p.79]

However, as the examples suggest, scalability of formal methods is mainly a
problem when trying to prove correctness of an implementation with respect to
its specification. As far as the use of formal specifications is concerned, scalability
is less of a problem since, even for large systems, the formal specification need
not always be very large due to the high level of abstraction possible with a
formal specification language. Furthermore, it is not always necessary to specify
all of the system formally.

There are a number of approaches to scale up formal methods, see e.g. [LG97,
p.79-81]. Nevertheless, a lot of work remains to be done before they are really
applicable to large-scale applications.

4.4. Formal methods and the developers using them

Software development is done by people, not by machines. No matter how ‘good’
a development method is, it will only be successful if the developers who are to
use it are willing and able to do so.

In the case of formal methods, it is sometimes claimed that, in order to be
able to use them, you need to have a Ph.D. in mathematics. Although this is
overstating the problem, it is true that the use of formal methods requires a
higher degree of mathematical maturity than the average software developer
possesses today.* Obviously, these requirements vary with the specific task to
be done. Reading and implementing a formal specification is much easier than
writing it in the first place, while a correctness proof is much more difficult still.

Some proponents of formal methods therefore argue that there should be
higher entry requirements for software developers, just like an engineer needs to

4 Admittedly, there are different opinions on this claim. E.g. “Certainly, anyone who can learn
a programming language can learn a specification notation like Z”. [Hal90, p.16]



12 Ralf Kneuper

be able to master a large amount of mathematics before being allowed to design
a bridge, a house or a car.

On the other hand, this would not just amount to introducing a new de-
velopment method but to restructuring the profession of software developer, a
task that should not be undertaken lightly, assuming that it is possible at all.
For example, this could eliminate many developers who think along different
lines and make a valuable contribution by coming up with new product ideas,
or communicating with users and colleagues. Communication forms a consider-
able proportion of development work. According to [BSHT93], developers spend
on average about 31% of their time on activities requiring communication skills
(meetings, presentations, discussions, etc) while technical activities (specifica-
tion, coding, testing, etc) take up about 55% of the time.

So far, mainly the ability of developers to use formal methods has been dis-
cussed. Even more important is their willingness to do so. There is a lot of
opposition among developers to even semi-formal approaches to software devel-
opment, let alone formal methods (this is of course partly due to their inability
to use them).

Introducing formal methods in an organisation poses not only technical but
also many social and psychological questions. Therefore, such ‘technology trans-
fer’ usually takes a lot of time and one should not expect to introduce formal
methods quickly in most environments.

4.5. Tool support

Tools are available for most of the tasks to be done when using formal methods,
on different levels of formality. Examples are syntax-directed or graphical edi-
tors for specification languages, theorem proving tools (automatic or interactive
theorem provers and proof checkers), code generators, interpreters for prototyp-
ing of formal specifications, tools for (semi-) automatic test case generation and
test evaluation, and compilers for programming languages with assertions. Good
tools can reduce some of the problems raised above. For example, dealing with
size limitations is not actually difficult but highly cumbersome and involves a
lot of clerical work most of which could be automated.

The following problems currently hinder the development and usage of tools.

First, in order to provide genuine support for formal methods, standardized
languages and methods are needed. In most cases, these are so far not available.
For example, there are several different dialects of the VDM specification lan-
guage and as a result, different tools supporting VDM can rarely be combined.®
Most current tools are quite inflexible in the sense that they each support one
specific language (dialect), method, logic, etc. This makes their combination very
difficult.

The mural interactive theorem prover [JJLM91] showed one approach to
solving this problem since in this system very little of the underlying logic and
theories is built in. The three-valued Logic of Partial Functions LPF used in
VDM is provided as an example instantiation, but the user can define other
logics and theories instead (with few restrictions, e.g. monotonicity).

5 However, a draft international standard (DIS) has been produced by an ISO working group
for the VDM specification language VDM-SL. Another group is working on a similar standard
for Z.



Limits of Formal Methods 13

A second problem in using tools to support some tasks in using formal meth-
ods is the need for considerably more formalisation (see Section 4.2). Few tools
support a mixture of formal and informal work, and it is difficult to define what
kind of support one would want.

The small market for such tools causes an additional problem. As long as
few tools supporting formal methods can be sold, few will be developed, and
the ones that are developed are mostly developed in an academic environment
where there are few resources and little motivation to turn a prototype into a
real product with support and maintenance etc.

(Missing or inadequate) tool support is sometimes described as one of the
reasons why formal methods are little used. Although of course better tool sup-
port is likely to increase usage of formal methods, the effect is likely to be small.
Good tools can reduce the effort for clerical and routine work considerably, such
as is needed in proving programs correct. However, before being able to automate
a development method (or, generally speaking, any kind of work), one first needs
a good understanding of the method itself (“a fool with a tool is still a fool”).

5. Limits to the usefulness of formal methods

There are a number of environments where one could use formal methods but
it would not be useful to do so, mainly because costs are too high in relation to
the benefits gained. In contrast to the limitations discussed in Section 4, all the
necessary tools etc may be available but it still does not make economic sense
to use formal methods.

The most important of these “pragmatic limitations” on using formal meth-
ods is closely related to the fact that formal methods only address a limited range
of issues in software development (cf. Section 2). Doing some parts of software
development really well using formal methods is of little use if important other
tasks are hardly done at all. E.g. it is wasted effort to prove a program cor-
rect (under stated assumptions) if one cannot be reasonably sure about sending
the correct version of it to the customer, i.e. if there is inadequate configura-
tion management/version control. Essentially, this implies that it is only worth
putting the effort into applying formal methods if the full development cycle is
well under control, for example in the sense of having a quality system according
to ISO 9001 or having an organization on level 3 of the SEI Capability Maturity
Model. Since currently the majority of organisations developing software still
have a long way to go to achieve this goal, introducing formal methods would be
wasted effort for them.

Another fairly obvious pragmatic limitation is that since formal methods
mainly help to increase correctness and reliability, they are only useful if there
are fairly high demands on the correctness and reliability of the resulting system.
Although this will often be the case, there are a number of software systems where
other quality characteristics have much higher priority. An extreme example are
many games where the main priorities are a good graphical user interface and
speed of the game software. For such a system, formal methods are of little use.

A type of software that tends to be difficult to handle using formal meth-
ods are commercial applications that often contain hardly any algorithm. Their
complexity stems from the large number of input and output fields but the ‘al-
gorithm’ consists mainly of moving data around. This makes them difficult to



14 Ralf Kneuper

specify formally, a formal specification could easily be just as long and as tedious
as the implementation itself.

Additionally, the requirements for commercial software often change very
fast, partly because they are not well-defined from the outset and partly because
its environment changes very fast. Although this can make formal methods more
useful by helping to keep track of the changing requirements, it also increases
the effort needed considerably. This may be acceptable when writing formal
specifications of the system, but makes it unacceptable to prove programs correct
each time unless the requirements on correctness and reliability are very high
indeed.

Of course, this argument not only applies to commercial software but to any
kind of software with rapidly changing requirements.

So far, we have mainly dealt with the developers’ point of view and the
reasons why they do not use formal methods. Just as important are the points
of view of management and of the customers. The reasons why they decide
for or against a certain development approach are mainly based on economic
rather than technical criteria, such as the perceived cost-benefit ratio and the
risk involved. Here convincing case studies are needed that look at the costs as
well as benefits, and express them both in financial terms. Looking for example
at the case studies in [HB95a], some (such as [FLBG95]) cover the costs of formal
methods as well, while many others only look at the results of the case studies
in technical terms.

6. Conclusions

Even using formal methods, writing formal specifications and correctness proofs

can only help to increase the likelihood but provide no absolute guarantee that

the resulting program is correct. As Brooks put it, there is no “silver bullet” to

solve the problems of software engineering, and this includes formal methods.
The main reasons for this are

e the fact that formal methods cover only parts of the development process

e the possibility of creating an incorrect specification which, even when imple-
mented correctly, still results in a faulty program

e the possibility that, in spite of applying formal methods, one can still create
an incorrect implementation of a specification, either because the description
of the relevant environment (TP monitor, complex programming language
features such as pointers, etc) is incomplete or incorrect, or because of plain
human error in applying formal methods.

When should formal methods be used? Obviously, in different environments,
different levels of formality will be useful.

Formal specification is often useful in order to increase completeness and con-
sistency and reduce ambiguity. Unclear or ambigous requirements are a common
source of defects of software systems, and the effort to use formal specifications
is not too big. However, whether or not formal methods help to solve this prob-
lem also depends on the kind of software to be developed and the sophistication
of the users who are to judge the correctness of the specification. Commercial
systems with little algorithm are less suitable, while for software with complex
algorithms, formal methods can be of great help.



Limits of Formal Methods 15

Other typical situations where it is useful to create formal specifications are
the definition of interfaces or of standards (e.g. of a programming language and
its semantics).

Ideally, some help for translating the formal specification back into natural
language should be available, such as the GIST paraphraser mentioned above, in
order to ease understanding by people other than the developer, in particular
the customer.

A more formalized approach, stating proof obligations and perhaps even dis-
charging them in formal correctness proofs, can be very useful when there are
(very) high demands on correctness and reliability of the software system devel-
oped, or at least central components of it. This tends to be the case in systems
software and, even more so, in safety-critical systems such as nuclear power sta-
tions, weapon systems, air or rail traffic control. Nevertheless, developing soft-
ware as part of a system where it is not allowed to fail (because of the large
potential damage) remains irresponsible, even when using comparatively “safe”
approaches such as formal methods.

For formal methods to be useful, some form of quality system should be
in place first, and the developers who are to use formal methods have to be
specifically selected and trained for this task.

Even without actually using formal methods, the ability to use them can help
develop better software, for example by asking oneself “How would I prove this
program correct if I needed to” or by being able to write better assertions inside
program (e.g. with the assert macro in C programs).

What does all this mean for the formal methods community? First of all,
realistic presentations of its achievements are needed, based on an understanding
of the limitations of formal methods and the willingness to admit these.

Concentrating on those areas where formal methods are most useful, formal
methods teaching, consulting as well as marketing (outside the formal methods
community), should be continued and, where possible, extended. So far, these
efforts show little success. To overcome this problem, the current research effort
on supporting slow evolution of development methods towards a more formal
approach (combining formal, semi-formal and informal approaches), and making
formal methods easier to use and less frightening for the average software engi-
neer, should be extended. Slow evolution towards new methods such as formal
methods is an absolute must in most industrial environments since otherwise the
risk, due to an unstable development environment, and the cost of introducing
them is too high. A lot of cultural change is needed before formal methods can
be adopted, and this does not happen quickly. Researchers in the area of formal
methods should therefore work on adding formality to the currently used infor-
mal or semi-formal approaches, without throwing away all the experience gained
(cf. the work referenced in [LPT94]).

Another research area where more work is needed is the handling of complex
language features and of the technical environment, e.g. by formally describing
the semantics of a “real-world” programming language such as C or Assembler,
which are often used in the kind of software where formal methods are most
useful.

References

[BSH*93] F.C. Brodbeck, S. Sonnentag, T. Heinbokel, W. Stolte, and M. Frese. Tétigkeits-



16

[CDH*96]

[CHT9)
[CNP192]

[Fai85]
[Fet88]

[FLBG95]

[Hal90]
[HB95a]
[FHBY5b)]
[HP95]

[Humss]

[1S091]

[JILMO1]

[Jon90]
[Kne91]
[LGYT]
[LPT94]

[Mar90]

[MLP79]

[Nau82]
[PMS87]

[Swa82]

Ralf Kneuper

schwerpunkte und Qualifikationsanforderungen in der Software-Entwicklung: Eine
empirische Untersuchung. Softwaretechnik-Trends, pages 31-40, May 1993.
Jean-Pierre Courtiat, Piotr Dembinski, Gerard J. Holzmann, Luigi Logrippo,
Harry Rudin, and Pamela Zave. Formal methods after 15 years: Status and trends.
A paper based on contributions of the panelists at the FORmal TEchnique ’95
Conference, Montreal, October 1995. Computer Networks and ISDN Systems,
28:1845-1855, 1996.

D. Coleman and J.W. Hughes. The clean termination of Pascal programs. Acta
Informatica, 11:195-210, 1979.

W. Coy, F. Nake, J.-M. Pfliiger, A. Rolf, J. Seetzen, D. Siefkes, and R. Stransfeld,
editors. Sichtweisen der Informatik. Vieweg, 1992.

Richard E. Fairley. Software Engineering Concepts. McGraw-Hill, 1985.

James H. Fetzer. Program verification: the very idea. Communications of the
ACM, 31(9):1048-1063, September 1988.

John S. Fitzgerald, Peter Gorm Larsen, Tom Brookes, and Michael Green. De-
veloping a security-critical system using formal and conventional methods. In
[HB95a], chapter 14, pages 333-356. 1995.

Anthony Hall. Seven myths of formal methods. IEEE Software, pages 11-19,
September 1990.

Michael G. Hinchey and Jonathan P. Bowen. Applications of Formal Methods.
Prentice Hall, 1995.

Michael G. Hinchey and Jonathan P. Bowen. Applications of formal methods
FAQ. In [HB9Y5a], chapter 1, pages 1-15. 1995.

Hans-Martin Horcher and Jan Peleska. Using formal specifications to support
software testing. Software Quality Journal, 4:309-327, 1995.

Watts S. Humphrey. Characterizing the software process: A maturity framework.
IEEE Software, 5(2):73-79, March 1988.

IS0 9000 Part 3. Quality management and quality assurance standards — Guide-
lines for the application of ISO 9001 to the development, supply and maintenance
of software, 1991.

C.B. Jones, K.D. Jones, P.A. Lindsay, and R.C. Moore. mural — A Formal
Development Support System. Springer-Verlag, 1991. With contributions from
J. Bicarregui, M. Elvang-Ggransson, R. Fields, R. Kneuper, B. Ritchie, A.C. Wills.
Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall Int.,
2nd edition, 1990.

Ralf Kneuper. Symbolic execution: a semantic approach. Science of Computer
Programming, 16:207-249, 1991.

Luqi and Joseph A. Goguen. Formal methods: Promises and problems. [EEE
Software, pages 73-85, January 1997.

Peter Gorm Larsen, Nico Plat, and Hans Toetenel. A formal semantics of data
flow diagrams. Formal Aspects of Computing, 6(6):586-606, 1994.

Lynn S. Marshall. Formally describing interactive systems. In CIliff B. Jones
and Roger C.F. Shaw, editors, Case Studies in Systematic Software Development,
pages 293-336. Prentice Hall Int., 1990.

R.A. De Millo, R.J. Lipton, and A.J. Perlis. Social processes and proofs of theo-
rems and programs. Communications of the ACM, 22(5), 1979.

Peter Naur. Formalization in program development. BIT, 22:437-453, 1982.

H. Partsch and B. Moller. Konstruktion korrekter Programme durch Transforma-
tion. Informatik-Spektrum, 10:309-323, 1987.

William R. Swartout. GIST English Generator. In Proc. of AAAI-82, 1982.



